中国水稻科学 ›› 2017, Vol. 31 ›› Issue (1): 1-12.DOI: 10.16819/j.1001-7216.2017.6132
• • 下一篇
收稿日期:
2016-09-30
修回日期:
2016-11-01
出版日期:
2017-01-20
发布日期:
2017-01-10
通讯作者:
包劲松
基金资助:
Received:
2016-09-30
Revised:
2016-11-01
Online:
2017-01-20
Published:
2017-01-10
Contact:
Jinsong BAO
摘要:
淀粉作为稻米最主要的储藏物质,其生物合成过程直接影响水稻的产量和品质。水稻淀粉的生物合成在造粉体中通过一系列酶促反应完成。本文综述了淀粉合成过程中ADP-葡萄糖焦磷酸化酶(AGPase)、淀粉合酶(SSs)、淀粉分支酶(BE)及淀粉脱支酶(DBE)的结构、功能以及各酶之间的相互作用的最新研究进展,以期为稻米品质改良提供理论参考依据。
中图分类号:
陈雅玲, 包劲松. 水稻胚乳淀粉合成相关酶的结构、功能及其互作研究进展[J]. 中国水稻科学, 2017, 31(1): 1-12.
Yaling CHEN, Jinsong BAO. Progress in Structures, Functions and Interactions of Starch Synthesis Related Enzymes in Rice Endosperm[J]. Chinese Journal OF Rice Science, 2017, 31(1): 1-12.
图1 光合作用组织和非光合作用组织中淀粉合成途径和相关代谢[7] TPT-磷酸丙糖转运蛋白; GPT-G6P转运蛋白; G1PT-假定的G1P转运蛋白[8]; BT1-Brittle1内包膜蛋白。A-叶片中瞬时淀粉合成; B-造粉体中储藏淀粉合成; C-淀粉合成途径。
Fig. 1. Schematic representation of the starch biosynthetic pathway and the related metabolism in photosynthetic and non-photosynthetic tissues[7]. TPT, Triose phosphate translocator; GPT, G6P translocator; G1PT, Putative G1P transporter[8]; BT1, Brittle-1 protein. A, The synthesis of assimilatory starch in the leaf; B, The synthesis of reserve starch in storage tissues; C, The starch synthetic pathway from G1P.
酶 Enzyme | 基因 Gene | 染色体 Chromosome | 最高表达时期 Highest expression stage(DAF) | 突变体 Mutant | 功能 Function |
---|---|---|---|---|---|
AGPase | AGPLSU | 5,1,3,7 | 6~15 | osagpl2 | 酶的调控中心Regulation center of the enzyme |
AGPSSU | 9,8 | 6 | osagps2 | 酶的活性中心 Activity center of the enzyme | |
SSs | GBSSⅠ | 6 | 6,15 | waxy | 合成直连淀粉或形成超长链 Synthesis of amylose or formation of extra-long chain |
SSⅠ | 6 | 10 | ssⅠ | 延伸DP 6-7的链形成DP 8-12的链 Formation of the DP 8-12 chain through elongated the DP 6-7 chain | |
SSⅡa/SSⅡ-3 | 6 | 无明显表达高峰 No obvious peaks | Most japonica | 延伸DP≤10的短链形成 DP 12-24的中链 Formation of the DP 12-24 chain through elongated the DP≤10 short chain | |
SSⅢa/SSⅢ-2 | 8 | 无明显表达高峰 No obvious peak | flo5 | 形成 DP>30的长链Formation of DP>30 long chain | |
SSⅣa | 1 | 无明显表达高峰 No obvious peak | - | 涉及淀粉颗粒的形成及控制颗粒数量 Involve formation of starch granules and control the number of starch granules | |
SSⅣb | 5 | 10 | ss4b | 涉及淀粉颗粒的形成及控制颗粒数量 Involve formation of starch granules and control the number of starch granules | |
BEs | BEⅠ | 6 | 10 | sbe1 | 分支多聚葡萄糖链,形成B链簇状结构 Branch glucose chain and form the cluster structure of b chain |
BEⅡb | 2 | 10 | ae | 分支多聚葡萄糖链,形成A链 Branch glucose chain and form A chain | |
DBEs | ISA1 | 8 | 10 | sugary1 | 形成同源复合物,去除不当分支 Cleavage improper branch through homologous complexes of ISA1 |
ISA2 | 5 | 10 | - | 与ISA1形成异源复合物 Form the heterogeneous complexes with ISA1 | |
PUL | 4 | 10 | pul | 补偿ISA功能 Compensate the function of ISA |
表1 水稻胚乳中淀粉合成相关基因、功能及表达特征
Table 1 Function and expression pattern of starch synthesis genes in rice endosperm.
酶 Enzyme | 基因 Gene | 染色体 Chromosome | 最高表达时期 Highest expression stage(DAF) | 突变体 Mutant | 功能 Function |
---|---|---|---|---|---|
AGPase | AGPLSU | 5,1,3,7 | 6~15 | osagpl2 | 酶的调控中心Regulation center of the enzyme |
AGPSSU | 9,8 | 6 | osagps2 | 酶的活性中心 Activity center of the enzyme | |
SSs | GBSSⅠ | 6 | 6,15 | waxy | 合成直连淀粉或形成超长链 Synthesis of amylose or formation of extra-long chain |
SSⅠ | 6 | 10 | ssⅠ | 延伸DP 6-7的链形成DP 8-12的链 Formation of the DP 8-12 chain through elongated the DP 6-7 chain | |
SSⅡa/SSⅡ-3 | 6 | 无明显表达高峰 No obvious peaks | Most japonica | 延伸DP≤10的短链形成 DP 12-24的中链 Formation of the DP 12-24 chain through elongated the DP≤10 short chain | |
SSⅢa/SSⅢ-2 | 8 | 无明显表达高峰 No obvious peak | flo5 | 形成 DP>30的长链Formation of DP>30 long chain | |
SSⅣa | 1 | 无明显表达高峰 No obvious peak | - | 涉及淀粉颗粒的形成及控制颗粒数量 Involve formation of starch granules and control the number of starch granules | |
SSⅣb | 5 | 10 | ss4b | 涉及淀粉颗粒的形成及控制颗粒数量 Involve formation of starch granules and control the number of starch granules | |
BEs | BEⅠ | 6 | 10 | sbe1 | 分支多聚葡萄糖链,形成B链簇状结构 Branch glucose chain and form the cluster structure of b chain |
BEⅡb | 2 | 10 | ae | 分支多聚葡萄糖链,形成A链 Branch glucose chain and form A chain | |
DBEs | ISA1 | 8 | 10 | sugary1 | 形成同源复合物,去除不当分支 Cleavage improper branch through homologous complexes of ISA1 |
ISA2 | 5 | 10 | - | 与ISA1形成异源复合物 Form the heterogeneous complexes with ISA1 | |
PUL | 4 | 10 | pul | 补偿ISA功能 Compensate the function of ISA |
图2 水稻淀粉合成相关酶3D结构 A-水稻AGPase的最小分子动力学结构[13]。蓝色的a链-LS; 绿色的c链-LS; 蓝绿色的b链-SS; 红色的d链-SS。B-水稻GBSSⅠ的同源模型[21]。蓝色为α螺旋,棕色为β片层,橙色为无规则卷曲。C-日本晴和93-11的SSⅠ三维结构[35]。蓝色为淀粉合酶催化区域; 黄色为葡萄糖转移酶区域。D-水稻BEⅠ结构[53]。紫色为N-末端,淡蓝色为CBM48区域,蓝绿色为α淀粉酶区域,橙色为C-末端。
Fig. 2. 3D structure of starch synthesis related enzymes in rice. A, Molecular dynamics minimized structure of the rice AGPase[13]. Blue chain a, LS; Green chain c, LS; Cyan chain b, SS; Red chain d, SS. B, Homology model of GBSSⅠ, alpha helices are in blue, beta plated sheets in orange and coils in brown. C, Computational models of the 3D structure of SSⅠ of Nipponbare and 93-11. The blue color represents the starch synthase catalytic domain, and the yellow color represents the glycosyl transferase group. D, Structure of BEⅠ from Oryza sativa L. The purple color represents N-domain; The nattier blue represents CBM48; The blue-green color represents α-amylase; The orange represents C-domain.
图3 水稻中淀粉合成相关酶之间的关联网络 BE-淀粉分支酶Ⅰ; SBE-淀粉分支酶Ⅱb; Osl-14800-普鲁蓝酶;Osl-33746-淀粉合酶Ⅱc。
Fig. 3. Potential association networks of starch synthesis enzymes in rice endosperm. BE, Branching enzyme Ⅰ; BEⅡb, Branching enzyme Ⅱb; Osl-14800, Pullulanase; Osl-33746, Starch synthase Ⅱc.
[1] | 朱德峰, 张玉屏, 陈惠哲, 向镜, 张义凯.中国水稻高产栽培技术创新与实践.中国农业科学, 2015, 48(17):3404-3414. |
Zhu D F, Zhang Y P, Chen H Z, Xiang J, Zhang Y K.Innovation and practice of high-yield rice cultivation technology in China.Sci Agric Sin, 2015, 48(17): 3404-3414. (in Chinese with English abstract) | |
[2] | Vandeputte G E, Delcour J A.From sucrose to starch granule to starch physical behaviour: A focus on rice starch.Carbohyd Polym, 2004, 58: 245-266. |
[3] | Singh N, Kaur L, Sandhu K S,Nishinari K.Relationships between physicochemical, morphological, thermal, rheological properties of rice starches.Food Hydrocolloid, 2006, 20(4): 532-542. |
[4] | 包劲松. 稻米淀粉品质遗传与改良研究进展. 分子植物育种, 2007, 5(6s): 1-20. |
Bao J S.Progress in studies on inheritance and improvement of rice starch quality.Mol Plant Breeding, 2007, 5(6s): 1-20. (in Chinese with English abstract) | |
[5] | Nakamura Y.Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue.Plant Cell Physiol, 2002, 43: 718-725. |
[6] | Hannah L C, James M.The complexities of starch biosynthesis in cereal endosperms.Curr Opin Biotech, 2008, 19: 160-165. |
[7] | Nakamura Y.Biosynthesis of reserve starch//Nakamura Y.Starch: Metabolism and Structure. Springer, Japan, 2015: 161-209. |
[8] | Fettke J, Malinova I, Albrecht T, Hejazi M, Steup M.Glucose-1-phosphate transport into protoplasts and chloroplasts from leaves ofArabidopsis. Plant Physiol, 2011, 155(4): 1723-1734. |
[9] | Tetlow I J, Davies E J, Vardy K A, Bowsher C G, Burrell M M, Emes M J.Subcellular localization of AD-Pglucose pyrophosphorylase in developing wheat endosperm and analysis of a plastidial isoform.J Exp Bot, 2003, 54: 715-725. |
[10] | Bowsher C G, Scrase-Field E F A L, Esposito S, Emes M J, Tetlow I J. Characterization of ADP-glucose transport across the cereal endosperm amyloplast envelope.J Exp Bot, 2007, 58: 1321-1332. |
[11] | Ohdan T, Francisco P B, Sawada T,Hirose T, Terao T, Satoh H, Nakamura Y.Expression profiling of genes involved in starch synthesis in sink and source organs of rice.J Exp Bot, 2005, 56(422): 3229-3244. |
[12] | Lee S K, Hwang S K, Han M,Eom J S, Kang H G, Han Y, Choi S B, Cho M H, Bhoo S H, An G H, Hahn T R, Okita T W, Jeon J S.Identification of the ADP-glucose pyrophosphorylase isoforms essential for starch synthesis in the leaf and seed endosperm of rice (Oryza sativa L.). Plant Mol Biol, 2007, 65(4): 531-546. |
[13] | Dawar C, Jain S, Kumar S.Insight into the 3D structure of ADP-glucose pyrophosphorylase from rice (Oryza sativa L.). J Mol Model, 2013, 19(8): 3351-3367. |
[14] | Seferoglu A B, Koper K, Can F B,Cevahir G, Kavakli I H.Enhanced heterotetrameric assembly of potato ADP-glucose pyrophosphorylase using reverse genetics.Plant Cell Physiol, 2014, pcu078. |
[15] | Tuncel A, Cakir B, Hwang S K,Okita T W.The role of the large subunit in redox regulation of the rice endosperm ADP-glucose pyrophosphorylase.FEBS J, 2014, 281(21): 4951-4963. |
[16] | Tang X J, Peng C, Zhang J,Cai Y, You X M, Kong F, Yan H G, Wang G X, Wang L, Jin J, Chen W W, Chen X G, Ma J, Wang P, Tiang L, Zhang W W, Wan J M.ADP-glucose pyrophosphorylase large subunit 2 is essential for storage substance accumulation and subunit interactions in rice endosperm.Plant Sci, 2016, 249: 70-83. |
[17] | Tetlow I J, Morell M K, Emes M J.Recent developments in understanding the regulation of starch metabolism in higher plants.J Exp Bot, 2004, 55(406): 2131-2145. |
[18] | Fujita N, Nakamura Y.Distinct and overlapping functions of starch synthase isoforms.Essent Rev Exp Biol, 2012a, 5: 115-140. |
[19] | Denyer K.The isolation and characterization of novel low-amylose mutants ofPisum sativum L.Plant Cell Environ, 1995, 18(9):1019-1026. |
[20] | Diall W M, Jiang H W, Chen Q S, Liu F, Wu P.Cloning and characterization of the granule-bound starch synthase Ⅱ gene in rice: Gene expression is regulated by the nitrogen level, sugar and circadian rhythm.Planta, 2003, 218(2): 261-268. |
[21] | Wattoo J I, Iqbal M S, Arif M, Saleem Z, Shahid M N, Iqbal M.Homology modeling, functional annotation and comparative genome analysis of GBSS enzyme in rice and maize genomes.Int J Agric Biol, 2015, 17(5): 1061-1065. |
[22] | Bligh H F J, Larkin P D, Roach P S,Jones C A, Fu H, Park W D. Use of alternate splice sites in granule-bound starch synthase mRNA from low-amylose rice varieties.Plant Mol Biol, 1998, 38(3): 407-415. |
[23] | Inukai T, Sako A, Hirano H Y,Sano Y.Analysis of intragenic recombination at wx in rice: Correlation between the molecular and genetic maps within the locus.Genome, 2000, 43(4): 589-596. |
[24] | Mikami I, Aikawa M, Hirano H Y,Sano Y.Altered tissue-specific expression at theWx gene of the opaque mutants in rice. Euphytica, 1999, 105(2): 91-97. |
[25] | Liu L L, Ma X D, Liu S J, Zhu C L, Jiang L, Wang Y H, Shen Y, Ren Y L, Dong H, Chen L M, Liu X, Zhao Z G, Zhai H Q, Wan JM.Identification and characterization of a novelWaxy allele from a Yunnan rice landrace. Plant Mol Biol, 2009, 71(6): 609-626. |
[26] | Sato H, Suzuki Y, Sakai M, Imbe T.Molecular characterization of Wx-mq, a novel mutant gene for low-amylose content in endosperm of rice(Oryza sativa L.). Breeding Sci, 2002, 52(2): 131-135. |
[27] | Larkin P D, Park W D.Association of waxy gene single nucleotide polymorphisms with starch characteristics in rice(Oryza sativa L.). Mol Breeding, 2003, 12(4): 335-339. |
[28] | Bergman C J, Delgado J T, McClung A M,Fjellstrom R G. An improved method for using a microsatellite in the rice waxy gene to determine amylose class. Cereal Chem, 2001, 78(3): 257-260. |
[29] | 李枝桦, 陆春明, 卢宝荣, 王云月.云南传统栽培稻品种 waxy 基因序列分析.分子植物育种, 2011, 9(6):665-671. |
Li Z H, Lu C M, Lu B R, Wang Y Y.Sequence analysis of waxy gene of yunnan rice landrace. Mol Plant Breeding, 2011, 9(6):665-671.(in Chinese with English abstract) | |
[30] | Hanashiro I, Itoh K, Kuratomi Y, Yamazaki M, Igarashi T, Matsugasako J I, Takeda Y.Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice.Plant Cell Physiol, 2008, 49(6): 925-933. |
[31] | Fujita N, Yoshida M, Kondo T,Saito K, Utsumi Y, Tokunaga T, Nishi H, Satoh J H, Park J L, Jane A, Miyao A, Hirochika Y, Nakamura Y.Characterization of SSⅢa-deficient mutants of rice: The function of SSⅢa and pleiotropic effects by SSⅢa deficiency in the rice endosperm. Plant Physiol, 2007, 144(4): 2009-2023. |
[32] | Teng B, Zhang C, Zhang Y,Wu J, Li Z, Luo Z, Yang J.Comparison of amylopectin structure and activities of key starch synthesis enzymes in the grains of rice single-segment substitution lines with differentWx alleles. Plant Growth Reg, 2015, 77(2): 117-124. |
[33] | Nakamura Y, Francisco P B, Hosaka Y,Sato A, Sawada T, Kubo A, Fujita N.Essential amino acids of starch synthase Ⅱa differentiate amylopectin structure and starch quality betweenjaponica and indica rice varieties. Plant Mol Biol, 2005, 58(2): 213-227. |
[34] | Takemoto-Kuno Y, Suzuki K, Nakamura S,Satoh H, Ohtsubo K.Soluble starch synthase I effects differences in amylopectin structure betweenindica and japonica rice varieties. J Agric Food Chem, 2006, 54(24): 9234-9240. |
[35] | Chen Y L, Bao J S.Underlying mechanisms of zymographic diversity in starch synthase I and pullulanase in rice-developing endosperm.J Agr Food Chem, 2016, 64(9): 2030-2037. |
[36] | Cao H, James M G, Myers, A M.Purification and characterization of soluble starch synthases from maize endosperm.Arch BiochemI Biophy, 2000, 373(1): 135-146. |
[37] | Commuri P D, Keeling P L.Chain-length specificities of maize starch synthase I enzyme: Studies of glucan affinity and catalytic properties.Plant J, 2001, 25: 475-486. |
[38] | Fujita N, Yoshida M, Asakura N,Ohdan T, Miyao A, Hirochika H, Nakamura Y.Function and characterization of starch synthase I using mutants in rice.Plant Physiol, 2006, 140(3): 1070-1084. |
[39] | Hirose T, Terao T.A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta, 2004, 220(1): 9-16. |
[40] | Umemoto T, Yano M, Satoh H, Shomura A, Nakamura Y.Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties.Theor Appl Genet, 2002, 104(1): 1-8. |
[41] | Jeon J S, Nayeon R, Tae-Ryong H,Harkamal W, Yasunori N.Starch biosynthesis in cereal endosperm.Plant Physiol Bioch, 2010, 48: 383-392. |
[42] | Tetlow I J.Starch biosynthesis in developing seeds.Seed Sci Res, 2011, 21: 5-32. |
[43] | Fujita N, Hanashiro I, Suzuki S, Higuchi T, Toyosawa Y, Utsumi Y, Itoh R, Aihara S, Nakamura Y.Elongated phytoglycogen chain length in transgenic rice endosperm expressing active starch synthase Ⅱa affects the altered solubility and crystallinity of the storage α-glucan.J Exp Bot, 2012b, 63(16): 5859-5872. |
[44] | Wang K, Hasjim J, Wu A C, Li E, Henry R J, Gilbert R G.Roles of GBSSⅠ and SSⅡa in determining amylose fine structure.Carbohyd Polym, 2015, 127: 264-274. |
[45] | Li Z, Li D, Du X,Wang H, Larroque O, Jenkins C L, Jobling S A, Morell M K.The barleyamo1 locus is tightly linked to the starch synthase Ⅲa gene and negatively regulates expression of granule-bound starch synthetic genes. J Exp Bot, 2011, 62(14): 5217-5231. |
[46] | Lin Q, Huang B, Zhang M,Zhang X, Rivenbark J, Lappe R L, James M G, Myers A M, Hennen-Bierwagen T A. Functional interactions between starch synthase Ⅲ and isoamylase-type starch-debranching enzyme in maize endosperm.Plant Physiol, 2012, 158(2): 679-692. |
[47] | Roldán I, Wattebled F, Mercedes Lucas M,Delvallé D, Planchot V, Jiménez S, Pérez R, Ball S, D’Hulst C, Mérida Á. The phenotype of soluble starch synthase Ⅳ defective mutants ofArabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. Plant J, 2007, 49(3): 492-504. |
[48] | Toyosawa Y, Kawagoe Y, Matsushima R, Crofts N, Ogawa M, Fukuda M, Kumamaru T, Okazaki Y, Kusano M, Saito K, Toyooka K, Sato M, Ai Y F, Jane J L, Nakamura Y, Fujita N .Deficiency of starch synthase Ⅲa and Ⅳb alters starch granule morphology from polyhedral to spherical in rice endosperm.Plant Physiol, 2016, 170(3): 1255-1270. |
[49] | Guan H, Li P, Imparl-Radosevich J, Preiss J, Keeling P.Comparing the properties ofEscherichia coli branching enzyme and maize branching enzyme. Arch Biochem Biophy, 1997, 342(1): 92-98. |
[50] | Satoh H, Nishi A, Yamashita K, Takemoto Y, Tanaka Y, Hosaka Y, Sakurai A, Fujita N, Nakamura, Y.Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm.Plant Physiol, 2003, 133(3): 1111-1121. |
[51] | Ryoo N, Yu C, Park C S, Baik M Y, Park I M, Cho M H, Bhoo S H, An G, Hahn T R, Jeon J S.Knockout of a starch synthase geneOsSSⅢa/Flo5 causes white-core floury endosperm in rice(Oryza sativa L.). Plant Cell Rep, 2007, 26(7): 1083-1095. |
[52] | Nakamura Y, Utsumi Y, Sawada T, Aihara S, Utsumi C, Yoshida M, Kitamura S.Characterization of the reactions of starch branching enzymes from rice endosperm.Plant Cell Physiol, 2010, 51(5): 776-794. |
[53] | Noguchi J, Chaen K, Vu N T,Akasaka T, Shimada H, Nakashima T, Nishi A, Satoh H, Omori T, Kakuta Y, Kimura M.Crystal structure of the branching enzyme I (BEI) fromOryza sativa L with implications for catalysis and substrate binding. Glycobiology, 2011, 21(8): 1108-1116. |
[54] | Nishi A, Nakamura Y, Tanaka N,Satoh H.Biochemical and genetic analysis of the effects ofamylose extender mutation in rice endosperm. Plant Physiol, 2001, 127: 459-472. |
[55] | Jiang H, Zhang J, Wang J,Xia M, Zhu S, Cheng B J.RNA interference-mediated silencing of the starch branching enzyme gene improves amylose content in rice . Genet Mol Res, 2013, doi. |
[56] | Wong K S, Kubo A, Jane J L,Harada K, Satoh H, Nakamura Y.Structures and properties of amylopectin and phytoglycogen in the endosperm ofsugary-1 mutants of rice. J Cereal Sci, 2003, 37: 139-149. |
[57] | Kubo A, Rahman S, Utsumi Y,Li Z, Mukai Y, Yamamoto M, Ugaki M, Harada K, Satoh H, Konik-Rose C, Morell M, Nakamura Y.Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis.Plant Physiol, 2005, 137(1): 43-56. |
[58] | Utsumi Y, Utsumi C, Sawada T,Fujita N, Nakamura Y.Functional diversity of isoamylase oligomers: The ISA1 homooligomer is essential for amylopectin biosynthesis in rice endosperm.Plant Physiol, 2011, 156: 61-77. |
[59] | 朱立楠, 刘海英, 孙璐璐, 孙涛, 郭雪冬, 朱方旭, 张忠臣, 金正勋.水稻灌浆过程中胚乳异淀粉酶基因家族表达特性及其与淀粉含量间关系分析. 中国水稻科学, 2015, 29(5): 528-534. |
Zhu L N, Liu H Y, Sun L L, Sun T, Guo X D, Zhu F X, Zhang Z C, Jin Z X.Analysis of expression characteristics of isoamylase and the correlation with starch content during grain filling in rice.Chin J Rice Sci, 2015, 29(5): 528-534. (in Chinese with English abstract) | |
[60] | Li Q F, Zhang G Y, Dong Z W,Yu H X, Gu M H, Sun S S M, Liu Q Q. Characterization of expression of theOsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice. Plant Physiol Bioch, 2009, 47: 351-358. |
[61] | Fujita N, Toyosawa Y, Utsumi Y,Higuchi T, Hanashiro I, Ikegami A, Akuzawa S, Yoshida M, Mori A, Inomata K, Itoh R, Miyao A, Hirochika H, Satoh H, Nakamura Y.Characterization of pullulanase (PUL)-deficient mutants of rice (Oryza sativa L.) and the function of PUL on starch biosynthesis in the developing rice endosperm. J Exp Bot, 2009, 60: 1009-1023. |
[62] | Tian Z X, Qian Q, Liu Q,Yan M, Liu X, Yan C J, Liu G, Gao Z, Tang S, Zeng D, Wang Y, Yu J, Gu M, Li J.Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities.PNAS, 2009, 106(51): 21760-21765. |
[63] | Yan C J, Tian Z X, Fang Y W,Yang Y C, Li J, Zeng S Y, Gu S L, Xu C W, Tang Z S, Gu M H.Genetic analysis of starch paste viscosity parameters in glutinous rice (Oryza sativa L.). Theor Appl Genet, 2011, 122: 63-76. |
[64] | Kharabian-Masouleh A, Waters D L, Reinke R F, Ward R, Henry R J.SNP in starch biosynthesis genes associated with nutritional and functional properties of rice.Sci Rep, 2012, 2. |
[65] | Yang F, Chen Y L, Tong C,Huang Y, Xu F F, Li K H, Corke H, Sun M, Bao J S.Association mapping of starch physicochemical properties with starch synthesis-related gene markers in nonwaxy rice (Oryza sativa L.). Mol Breeding, 2014, 34(4): 1747-1763. |
[66] | Tetlow I J, Beisel K G, Cameron S,Makhmoudova A, Liu F, Bresolin N S, Wait R, Morell M K, Emes M J.Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes.Plant Physiol, 2008, 146(4): 1878-1891. |
[67] | Liu F, Makhmoudova A, Lee E A,Wait R, Emes M J, Tetlow I J .The amylose extender mutant of maize conditions novel protein-protein interactions between starch biosynthetic enzymes in amyloplasts.J Exp Bot, 2009b, 60(15): 4423-4440. |
[68] | Hennen-Bierwagen T A, Liu F, Marsh R S,Kim S, Gan Q, Tetlow I J, Emes M J, James M G, Myers A M. Starch biosynthetic enzymes from developing Zea mays endosperm associate in multisubunit complexes.Plant Physiol, 2008, 146:1892-1908. |
[69] | Liu F, Ahmed Z, Lee E A,Donner E, Liu Q, Ahmed R, Morell, M K, Emes M J, Tetlow I J . Allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein-protein interactions.J Exp Bot, 2012, 63(3): 1167-1183. |
[70] | Bao J S.Towards understanding of the genetic and molecular basis of eating and cooking quality of rice.Cereal Food World, 2012, 57:148-156. |
[71] | Nakamura Y, Ono M, Utsumi C,Steup M.Functional interaction between plastidial starch phosphorylase and starch branching enzymes from rice during the synthesis of branched maltodextrins.Plant Cell Physiol, 2012, 53(5): 869-878. |
[72] | Nakamura Y, Aihara S, Crofts N,Sawada T, Fujita N.In vitro studies of enzymatic properties of starch synthases and interactions between starch synthase I and starch branching enzymes from rice.Plant Sci, 2014, 224: 1-8. |
[73] | Crofts N, Abe N, Oitome N F,Matsushima R, Hayashi M, Tetlow, I J, Emes M J, Nakamura Y, Fujita N. Amylopectin biosynthetic enzymes from developing rice seed form enzymatically active protein complexes.J Exp Bot, 2015, 66: 4469-4482. |
[74] | She K C, Kusano H, Koizumi K, Yamakawa H, Hakata M, Imamura T, Fukuda M, Naito N, Tsurumaki Y, Yaeshima M, Tsuge T, Matsumoto K, Kudoh M, Itoh E, Kikuchi S, Kishimoto N, Yazaki J, Ando T, Yano M, Aoyama T, Sasaki T, Satoh H, Shimada H.A novel factor FLOURY ENDOSPERM2 is involved in regulation of rice grain size and starch quality.Plant Cell, 2010, 22: 3280-3294. |
[75] | Peng C, Wang Y, Liu F, Ren Y, Zhou K, Lv J, Zheng M, Zhao S L, Zhang L, Wang C M, Jiang L, Zhang X, Guo X P, Bao Y Q, Wan J M.FLOURY ENDOSPERM6 encodes a CBM48 domain-containing protein involved in compound granule formation and starch synthesis in rice endosperm.Plant J, 2014, 77: 917-930. |
[76] | Wang J C, Xu H, Zhu Y,Liu Q Q, Cai X L.OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm.J Exp Bot, 2013, 64: 3453-3466. |
[77] | Tomita K, Horiuchih H, Terada K, Tanoi M, Kobayashi A, Kanda K, Tanaka I, Minobe T, Furuta H, Yamamoto A, Shinoyama H, Aoki K, Masaki N, Minami T, Sugimoto A, Kagashima C, Horiuchi K.New-hikari, a new rice cultivar.Bull Fukui Agric Exp, 2007, 44: 1-20. |
[78] | 王才林, 陈摇涛, 张亚东, 朱镇, 赵凌, 林静.通过分子标记辅助选择培育优良食味水稻新品种.中国水稻科学, 2009, 23:25-30. |
Wang C L, Chen T, Zhang Y D, Zhu Z, Zhao L, Lin J.Breeding of a new rice variety with good eating quality by marker assisted selection.Chin J Rice Sci, 2009, 23(1): 25-30. (in Chinese with English abstract) | |
[79] | 王才林, 张亚东, 朱摇镇, 姚姝, 赵庆勇, 陈涛, 周丽慧, 赵凌.优良食味粳稻新品种南粳9108的选育与利用.江苏农业科学, 2013, 41:86-88. |
Wang C L, Zhang Y D, Zhu Y Z, Yao S, Zhao Q Y, Chen T, Zhou L H, Zhao L.Breeding and utilization of a new good eating quality rice variety Nanjing 9108.Jiangsu Agric Sci, 2013, 41:86-88.(in Chinese with English abstract) | |
[80] | 杨瑞芳, 白建江, 方军, 曾威, 朴钟泽, 李刚夑.分子标记辅助选择选育高抗性淀粉水稻新品种.核农学报, 2015, 29:2259-2267. |
Yang R F, Bai J J, Fang J, Zeng W, Piao Z Z, Lee G S.Establishment of marker-assisted selection system for breeding rice varieties with high resistant starch content. J Nucl Agric Sci, 2015, 29(12): 2259-2267. (in Chinese with English abstract) | |
[81] | Sacks W J, Deryng D, Foley J A, Ramankutty N.Crop planting dates: an analysis of global patterns.Global Ecol Bioge, 2010, 19(5): 607-620. |
[82] | Liu Q, Wu X, Ma J, Li T, Zhou X, Guo T.Effects of high air temperature on rice grain quality and yield under field condition.Agron J, 2013, 105(2): 446-454. |
[83] | Chen J, Tang L, Shi P, Yang B, Sun T, Cao W, Zhu Y.Effects of short-term high temperature on grain quality and starch granules of rice (Oryza sativa L.) at post-anthesis stage. Protoplasma, 2016: 1-9. |
[84] | Liao J L, Zhou H W, Zhang H Y, Zhong P A, Huang Y J.Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress.J Exp Bot, 2014, 65(2): 655-671. |
[85] | Sreenivasulu N, Butardo V M, Misra G, Cuevas R P, Anacleto R, Kishor P B K. Designing climate-resilient rice with ideal grain quality suited for high-temperature stress.J Exp Bot, 2015, 66(7): 1737-1748. |
[86] | Zhou H J, Wang L J, Liu G F, Meng X B, Jing Y H, Shu X L, Kong X L, Sun J, Yu H, Smith S M, Wu D X, Li J Y. (2016). Critical roles of soluble starch synthase SSⅢa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice.P Natl Acad Sci, 2016, DOI: 10.1073/pnas.1615104113. |
[1] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
[2] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
[3] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[4] | 候小琴, 王莹, 余贝, 符卫蒙, 奉保华, 沈煜潮, 谢杭军, 王焕然, 许用强, 武志海, 王建军, 陶龙兴, 符冠富. 黄腐酸钾提高水稻秧苗耐盐性的作用途径分析[J]. 中国水稻科学, 2024, 38(4): 409-421. |
[5] | 胡继杰, 胡志华, 张均华, 曹小闯, 金千瑜, 章志远, 朱练峰. 根际饱和溶解氧对水稻分蘖期光合及生长特性的影响[J]. 中国水稻科学, 2024, 38(4): 437-446. |
[6] | 刘福祥, 甄浩洋, 彭焕, 郑刘春, 彭德良, 文艳华. 广东省水稻孢囊线虫病调查与鉴定[J]. 中国水稻科学, 2024, 38(4): 456-461. |
[7] | 陈浩田, 秦缘, 钟笑涵, 林晨语, 秦竞航, 杨建昌, 张伟杨. 水稻根系和土壤性状与稻田甲烷排放关系的研究进展[J]. 中国水稻科学, 2024, 38(3): 233-245. |
[8] | 缪军, 冉金晖, 徐梦彬, 卜柳冰, 王平, 梁国华, 周勇. 过量表达异三聚体G蛋白γ亚基基因RGG2提高水稻抗旱性[J]. 中国水稻科学, 2024, 38(3): 246-255. |
[9] | 尹潇潇, 张芷菡, 颜绣莲, 廖蓉, 杨思葭, 郭岱铭, 樊晶, 赵志学, 王文明. 多个稻曲病菌效应因子的信号肽验证和表达分析[J]. 中国水稻科学, 2024, 38(3): 256-265. |
[10] | 朱裕敬, 桂金鑫, 龚成云, 罗新阳, 石居斌, 张海清, 贺记外. 全基因组关联分析定位水稻分蘖角度QTL[J]. 中国水稻科学, 2024, 38(3): 266-276. |
[11] | 魏倩倩, 汪玉磊, 孔海民, 徐青山, 颜玉莲, 潘林, 迟春欣, 孔亚丽, 田文昊, 朱练峰, 曹小闯, 张均华, 朱春权. 信号分子硫化氢参与硫肥缓解铝对水稻生长抑制作用的机制[J]. 中国水稻科学, 2024, 38(3): 290-302. |
[12] | 周甜, 吴少华, 康建宏, 吴宏亮, 杨生龙, 王星强, 李昱, 黄玉峰. 不同种植模式对水稻籽粒淀粉含量及淀粉关键酶活性的影响[J]. 中国水稻科学, 2024, 38(3): 303-315. |
[13] | 关雅琪, 鄂志国, 王磊, 申红芳. 影响中国水稻生产环节外包发展因素的实证研究:基于群体效应视角[J]. 中国水稻科学, 2024, 38(3): 324-334. |
[14] | 许用强, 姜宁, 奉保华, 肖晶晶, 陶龙兴, 符冠富. 水稻开花期高温热害响应机理及其调控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 111-126. |
[15] | 吕海涛, 李建忠, 鲁艳辉, 徐红星, 郑许松, 吕仲贤. 稻田福寿螺的发生、危害及其防控技术研究进展[J]. 中国水稻科学, 2024, 38(2): 127-139. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||