Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (2): 197-208.DOI: 10.16819/j.1001-7216.2025.240201
• Research Papers • Previous Articles Next Articles
GONG Mengmeng1,2, SONG Shufeng2, QIU Mudan1,2, DONG Hao2, ZHANG Longhui2, LI Lei2, LI Bin2, CHEN Weijun2, LI Yixing2, WANG Tiankang2, LEI Dongyang1,*(), LI Li2,*(
)
Received:
2024-02-01
Revised:
2024-03-21
Online:
2025-03-10
Published:
2025-03-19
Contact:
LEI Dongyang, LI Li
龚蒙萌1,2, 宋书锋2, 邱牡丹1,2, 董皓2, 张龙辉2, 李磊2, 李斌2, 谌伟军2, 李懿星2, 王天抗2, 雷东阳1,*(), 李莉2,*(
)
通讯作者:
雷东阳,李莉
基金资助:
GONG Mengmeng, SONG Shufeng, QIU Mudan, DONG Hao, ZHANG Longhui, LI Lei, LI Bin, CHEN Weijun, LI Yixing, WANG Tiankang, LEI Dongyang, LI Li. Functional Characterization of Rice Leaf Color Gene OsClpP6[J]. Chinese Journal OF Rice Science, 2025, 39(2): 197-208.
龚蒙萌, 宋书锋, 邱牡丹, 董皓, 张龙辉, 李磊, 李斌, 谌伟军, 李懿星, 王天抗, 雷东阳, 李莉. 水稻叶色基因OsClpP6的功能研究[J]. 中国水稻科学, 2025, 39(2): 197-208.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.240201
Fig. 1. Analysis of Clp family A represents the phylogenetic tree of the Clp gene family in rice, wheat, maize, Arabidopsis thaliana, soybean, and tobacco. The outer ring displays the domains, with different colors indicating different types; B shows the sequence alignment of one gene selected from each of the five different types in A; C shows the heatmap of the spatiotemporal expression of the ClpP gene family in rice.
基因名 Gene name | 登录号 Locus ID | 长度 CDS length(bp) | 氨基酸数 Amino acids | 等电点 PI |
---|---|---|---|---|
OsClp1 | LOC_Os01g16530.1 | 897 | 298 | 9.37 |
OsClp2 | LOC_Os01g32350.1 | 945 | 314 | 8.78 |
OsClp3 | LOC_Os02g42290.1 | 897 | 298 | 7.25 |
OsClpP5 | LOC_Os03g19510.1 | 849 | 282 | 8.46 |
OsClp5 | LOC_Os03g22430.1 | 1026 | 341 | 9.85 |
OsClpP6 | LOC_Os03g29810.1 | 780 | 259 | 7.94 |
OsClp7 | LOC_Os04g44400.1 | 930 | 309 | 7.30 |
OsClp8 | LOC_Os05g51450.1 | 1161 | 386 | 9.30 |
OsClp9 | LOC_Os06g04530.1 | 894 | 297 | 9.50 |
OsClp10 | LOC_Os06g39712.1 | 651 | 216 | 4.38 |
/ | LOC_Os08g15270.1 | 651 | 216 | 4.38 |
/ | LOC_Os10g21300.1 | 651 | 216 | 4.38 |
OsClp11 | LOC_Os10g43050.1 | 882 | 293 | 4.69 |
OsClp13 | LOC_Os12g10590.1 | 651 | 216 | 4.49 |
Table 1. Information for Clp family in rice
基因名 Gene name | 登录号 Locus ID | 长度 CDS length(bp) | 氨基酸数 Amino acids | 等电点 PI |
---|---|---|---|---|
OsClp1 | LOC_Os01g16530.1 | 897 | 298 | 9.37 |
OsClp2 | LOC_Os01g32350.1 | 945 | 314 | 8.78 |
OsClp3 | LOC_Os02g42290.1 | 897 | 298 | 7.25 |
OsClpP5 | LOC_Os03g19510.1 | 849 | 282 | 8.46 |
OsClp5 | LOC_Os03g22430.1 | 1026 | 341 | 9.85 |
OsClpP6 | LOC_Os03g29810.1 | 780 | 259 | 7.94 |
OsClp7 | LOC_Os04g44400.1 | 930 | 309 | 7.30 |
OsClp8 | LOC_Os05g51450.1 | 1161 | 386 | 9.30 |
OsClp9 | LOC_Os06g04530.1 | 894 | 297 | 9.50 |
OsClp10 | LOC_Os06g39712.1 | 651 | 216 | 4.38 |
/ | LOC_Os08g15270.1 | 651 | 216 | 4.38 |
/ | LOC_Os10g21300.1 | 651 | 216 | 4.38 |
OsClp11 | LOC_Os10g43050.1 | 882 | 293 | 4.69 |
OsClp13 | LOC_Os12g10590.1 | 651 | 216 | 4.49 |
Fig. 2. Analysis of expression pattern of OsClpP6 A represents the tissue expression pattern of OsClpP6 in rice, and B represents the subcellular localization of the OsClpP6 protein. P3 and P8 represent young panicles at the 3rd and 8th stages of panicle differentiation, respectively.
Fig. 4. Phenotypic observation of OsClpP6 mutants A shows the phenotypic images of WT, clpp6-6s-ko-1, and clpp6-6s-ko-2 at the mature stage; B shows the flag leaves of WT, clpp6-6s-ko-1, and clpp6-6s-ko-2; C-H are the transmission electron microscopy images of the leaves of WT, clpp6-6s-ko-1, and clpp6-6s-ko-2; I is the statistical chart of plant height; J is the statistical chart of chlorophyll b content in the flag leaf; K is the statistical chart of chlorophyll a content in the flag leaf; Cw stands for cell wall; S stands for starch granules; Og stands for osmiophilic globules; Thy stands for thylakoids.
Fig. 5. Observation of panicle phenotypes of OsClpP6 mutants A shows the panicle phenotypes of WT, clpp6-6s-ko-1, and clpp6-6s-ko-2; B and C show comparison of grain shape among WT, clpp6-6s-ko-1, and clpp6-6s-ko-2; D-I are statistical charts of agronomic traits.
Fig. 6. RNA-seq quality assessment A represents the number of reads aligned to the reference genome; B indicates the number of reads aligned to unique locations in the reference genome; C refers to the selection of 20 up- and 20 down-regulated genes for qRT-PCR validation of transcriptome results; D represents the qRT-PCR analysis results of genes related to chloroplast development and photosynthesis in WT and the mutants. Data are presented as mean ± standard deviation (n = 3). ** P < 0.01.
Fig. 7. Analysis of RNA-seq result The enrichment significance q-value less than 0.05, and the bubble size representing the number of genes in the pathway.
KEGG通路 KEGG pathway | 基因编号 Gene ID | 基因 Gene | log2(FC_clpp6-6s-ko/WT) |
---|---|---|---|
光合作用Photosynthesis | Os01g0773700 | −1.8675 | |
Os02g0103800 | OsLFNR1 | −2.5355 | |
Os02g0103850 | −2.5179 | ||
Os02g0578400 | −3.1080 | ||
Os06g0107700 | OsLFNR2 | −1.2132 | |
Os07g0148900 | −2.7024 | ||
Os08g0119800 | −2.0123 | ||
Os09g0481200 | −2.2606 | ||
Os10g0355800 | 2.1703 | ||
Os12g0189400 | −2.0962 | ||
Os12g0420400 | −1.8026 | ||
Os04g0414700 | −1.8744 | ||
光合作用-天线蛋白Photosynthesis-antenna proteins | Os01g0600900 | −2.0603 | |
Os02g0197600 | −1.2470 | ||
Os06g0320500 | −1.8205 | ||
Os08g0435900 | Lhca4 | −1.9374 | |
Os09g0346500 | OsCAB1R | −1.2537 | |
光合组织中的碳固定作用Carbon fixation in photosynthetic organisms | Os02g0601300 | 1.1576 | |
Os04g0682100 | −4.7302 | ||
Os06g0133800 | −1.9227 | ||
Os06g0608700 | OsAld-Y | −2.7748 | |
Os10g0390500 | FLO12 | 1.6028 | |
Os11g0171300 | AldP | −1.9355 | |
Os12g0169600 | −3.9710 | ||
Os12g0291066 | −3.1725 | ||
Os12g0291100 | OsRBCS3 | −3.6935 | |
Os12g0291400 | OsRBCS5 | −3.5781 | |
Os12g0292301 | −5.1414 | ||
Os12g0292400 | OsRBCS4 | −4.3509 |
Table 3. Differentially expressed genes in photosynthesis-related pathways
KEGG通路 KEGG pathway | 基因编号 Gene ID | 基因 Gene | log2(FC_clpp6-6s-ko/WT) |
---|---|---|---|
光合作用Photosynthesis | Os01g0773700 | −1.8675 | |
Os02g0103800 | OsLFNR1 | −2.5355 | |
Os02g0103850 | −2.5179 | ||
Os02g0578400 | −3.1080 | ||
Os06g0107700 | OsLFNR2 | −1.2132 | |
Os07g0148900 | −2.7024 | ||
Os08g0119800 | −2.0123 | ||
Os09g0481200 | −2.2606 | ||
Os10g0355800 | 2.1703 | ||
Os12g0189400 | −2.0962 | ||
Os12g0420400 | −1.8026 | ||
Os04g0414700 | −1.8744 | ||
光合作用-天线蛋白Photosynthesis-antenna proteins | Os01g0600900 | −2.0603 | |
Os02g0197600 | −1.2470 | ||
Os06g0320500 | −1.8205 | ||
Os08g0435900 | Lhca4 | −1.9374 | |
Os09g0346500 | OsCAB1R | −1.2537 | |
光合组织中的碳固定作用Carbon fixation in photosynthetic organisms | Os02g0601300 | 1.1576 | |
Os04g0682100 | −4.7302 | ||
Os06g0133800 | −1.9227 | ||
Os06g0608700 | OsAld-Y | −2.7748 | |
Os10g0390500 | FLO12 | 1.6028 | |
Os11g0171300 | AldP | −1.9355 | |
Os12g0169600 | −3.9710 | ||
Os12g0291066 | −3.1725 | ||
Os12g0291100 | OsRBCS3 | −3.6935 | |
Os12g0291400 | OsRBCS5 | −3.5781 | |
Os12g0292301 | −5.1414 | ||
Os12g0292400 | OsRBCS4 | −4.3509 |
[1] | 于红燕, 刘世义. 我国水稻产业发展现状、趋势及对策[J]. 农村经济与科技, 2016, 27(9): 7-9. |
Yu H Y, Liu S Y. Current situation, trends and countermeasures of the rice industry[J]. Rural Economy and Science-Technology, 2016, 27(9): 7-9. (in Chinese) | |
[2] | 魏颖娟, 赵杨, 邹应斌. 不同穗型超级稻品种籽粒灌浆特性[J]. 作物学报, 2016, 42(10): 1516-1529. |
Wei Y J, Zhao Y, Zou Y B. Grain-filling characteristics in super rice with different panicle types[J]. Acta Agronomica Sinica, 2016, 42(10): 1516-1529. (in Chinese with English abstract) | |
[3] | Toshiyuki T, Yoshimichi F, Tatsuhiko S, Takeshi H. Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2005, 56(418): 2107-2118. |
[4] | 赵宏亮, 陈凯, 张强, 徐建龙, 黎志康. 应用主成分分析和聚类分析的水稻源库特性研究[J]. 沈阳农业大学学报, 2015, 46(2): 135-141. |
Zhao H L, Chen K, Zhang Q, Xu J L, Li Z K. Application of principal component analysis and cluster analysis of source-sink characteristics of rice[J]. Journal of Shenyang Agricultural University, 2015, 46(2): 135-141. (in Chinese with English abstract) | |
[5] | 吕川根, 李霞, 陈国祥. 超级杂交稻两优培九高产的光合特性及其生理基础[J]. 中国农业科学, 2017, 50(21): 4055-4070. |
Lü C G, Li X, Chen G X. Photosynthetic characteristics and its physiological basis of super high-yielding hybrid rice Liangyoupeijiu[J]. Scientia Agricultura Sinica, 2017, 50(21): 4055-4070. | |
[6] | Meskauskiene R, Nater M, Goslings D A M, Kessler F, Opden C R, Apel K. FLU: A negative regulator of chlorophyll biosynthesis in Arabidopsis thaliana[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98: 12826-12831. |
[7] | Boekema E J, van Roon H, van Breemen J F, Dekker J P. Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes[J]. European Journal of Biochemistry, 1999, 266(2): 444-452. |
[8] | 李保珠, 赵孝亮, 彭雷. 植物叶绿体发育及调控研究进展[J]. 植物学报, 2014, 49(3): 337-345. |
Li B Z, Zhao X L, Peng L. Research advances in the development and regulation of plant chloroplasts[J]. Chinese Bulletin of Botany, 2014, 49(3): 337-345. | |
[9] | Sugimoto H, Kusumi K, Tozawa Y, Yazaki J, Kishimoto N, Kikuchi S, Iba K. The virescent-2 mutation inhibits translation of plastid transcripts for the plastid genetic system at an early stage of chloroplast differentiation[J]. Plant & Cell Physiology, 2004, 45(8): 985-996. |
[10] | Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K. The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria[J]. The Plant Journal, 2007, 52(3): 512. |
[11] | Lee S, Kim J H, Yoo E S, Lee C H, Hirochika H, An G. Differential regulation of chlorophyll a oxygenase genes in rice[J]. Plant Molecular Biology, 2005, 57: 805-818. |
[12] | Wang P, Gao J, Wan C, Zhang F T, Xu Z J, Huang X Q, Sun X Q, Deng X J. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice[J]. Plant Physiology, 2010, 153(3): 994. |
[13] | Sakuraba Y, Rahman M L, Cho S H, Kim Y S, Koh H J, Yoo S C, Paek N C. The rice faded green leaf locus encodes protochlorophyllide oxidoreductase B and is essential for chlorophyll synthesis under high light conditions[J]. Plant Journal, 2013, 74(1): 122-133. |
[14] | Sato Y, Morita R, Katsuma S, Nishimura M, Tanaka A, Kusaba M. Two short-chain dehydrogenase/reductases, NON-YELLOW COLORING 1 and NYC1-LIKE, are required for chlorophyll b and light-harvesting complex II degradation during senescence in rice[J]. The Plant Journal, 2009, 57(1): 120-131. |
[15] | Kato Y, Sakamoto W. New insights into the types and function of proteases in plastids[J]. International Review of Cell and Molecular Biology, 2010, 280: 185-218. |
[16] | 中国科学院植物研究所. 揭示叶绿体蛋白转运与质量控制的新机制[J]. 高科技与产业化, 2022, 28(6): 47. |
Institute of Botany, Chinese Academy of Sciences. Unveiling the new mechanisms of chloroplast protein transport and quality control[J]. High-Technology & Industrialization, 2022, 28(6): 47. (in Chinese) | |
[17] | Rodriguez-Concepcion M, D’Andrea L, Pulido P. Control of plastidial metabolism by the Clp protease complex[J]. Journal of Experimental Botany, 2019, 70(7): 2049-2058. |
[18] | Adam Z, Rudella A, van Wijk K J. Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts[J]. Current Opinion in Plant Biology, 2006, 9(3): 234-240. |
[19] | 陈晓, 孙朝辉, 李思远, 陈彦惠. 玉米ClpR2同源基因PL5L15的克隆及其在不同光周期处理下的表达分析[J]. 分子植物育种, 2008(6): 1187-1192. |
Chen X, Sun Z H, Li S Y, Chen Y H. Clone and transcription levels analysis of ortholog PL5L15 of ClpR2 in maize under different photoperiod control[J]. Molecular Plant Breeding, 2008(6): 1187-1192. (in Chinese with English abstract) | |
[20] | Dong H, Fei G L, Wu C Y, Wu F Q, Sun Y Y, Chen M J, Ren Y L, Zhou K N, Cheng Z J, Wang J L, Jiang L, Zhang X, Guo X P, Lei C L, Su N, Wang H, Wan J M. A rice virescent-yellow leaf mutant reveals new insights into the role and assembly of plastid caseinolytic protease in higher plants[J]. Plant Physiology, 2013, 162: 1867. |
[21] | 纪鸿飞, 彭振英, 马敬, 毕玉平. 花生Clp蛋白酶基因(AhClpP)的克隆与序列分析[J]. 华北农学报, 2010, 25(S2): 5-8. |
Hong J F, Peng Z Y, Ma J, Bi Y P. Cloning and analyzing of caseinolytic protease gene from Arachis hypogaea L.[J]. Acta Agriculturae Boreali-Sinica, 2010, 25(S2): 5-8. (in Chinese with English abstract) | |
[22] | Kim J, Kimber M S, Nishimura K, Friso G, Schultz L, Ponnala L, van Wijk K J. Structures, functions, and interactions of ClpT1 and ClpT2 in the Clp protease system of Arabidopsis chloroplasts[J]. The Plant Cell, 2015, 27(5): 1477-1496. |
[23] | Kuroda H, Maliga P. The plastid clpP1 protease gene is essential for plant development[J]. Nature, 2003, 425: 86-89. |
[24] | Tsugane K, Maekawa M, Takagi K, Takahara H, Qian Q, Eun C H, Iida S. An active DNA transposon nDart causing leaf variegation and mutable dwarfism and its related elements in rice[J]. The Plant Journal, 2006, 45(1): 46-57. |
[25] | Li W, Wu C, Hu G C, Xing L, Qian W J, Si H M, Sun Z X, Wang X C, Fu Y P, Liu W Z. Characterization and fine mapping of a novel rice narrow leaf mutant nal9 [J]. Journal of Integrative Plant Biology, 2013, 55(11): 1016. |
[26] | 丁颖, 李乃铭, 徐雪宾. 水稻分蘖发育现象的观察[M]. 广州: 华南农学院, 1959. |
Ding Y, Li N M, Xu X B. Observation on the Phenomenon of Rice Tillering Development[M]. Guangzhou: South China Agricultural College, 1959. (in Chinese) | |
[27] | 张立成, 李懿星, 王天抗, 邱牡丹, 宋书锋, 董皓, 李磊, 刘建丰, 李莉. 水稻抽穗期基因OsDof6功能的初步研究[J]. 中国水稻科学, 2020, 34(5): 397-405. |
Zhang L C, Li Y X, Wang T K, Qiu M D, Song S F, Dong H, Li L, Liu J F, Li L. A preliminary study on the function of rice heading date gene OsDof6[J]. Chinese Journal of Rice Science, 2020, 34(5): 397-405. (in Chinese with English abstract) | |
[28] | 夏思奇, 杨汉树, 邱牡丹, 李磊, 李懿星, 宋书锋, 李莉, 王建龙. 水稻糖苷水解酶基因OsINV3影响花粉育性的研究[J]. 杂交水稻, 2024, 39(1): 35-43. |
Xia S Q, Yang H S, Qiu M D, Li L, Li Y X, Song S F, Li L, Wang J L. Effects of rice glycoside hydrolase gene OsINV3 on pollen fertility[J]. Hybrid Rice, 2024, 39(1): 35-43. (in Chinese with English abstract) | |
[29] | Goh C H, Satoh K, Kikuchi S, Kim S C, Ko S M, Kang H G, Jeon J S, Kim C S, Park Y I. Mitochondrial activity in illuminated leaves of chlorophyll-deficient mutant rice (OsCHLH) seedlings[J]. Plant Biotechnology Reports, 2010, 4(4): 281-291. |
[30] | Wang P, Wan C, Xu Z, Wang P, Wang W, Sun C, Ma X, Xiao Y, Zhu J, Gao X, Deng X. One divinyl reductase reduces the 8-vinyl groups in various intermediates of chlorophyll biosynthesis in a given higher plant species, but the isozyme differs between species[J]. Plant Physiology, 2013, 161(1): 521-534. |
[31] | 杨海莲, 刘敏, 郭旻, 李荣德, 张宏根, 严长杰. 一个水稻黄绿叶突变体ygl10的遗传分析和基因定位[J]. 中国水稻科学, 2014, 28(1): 41-48. |
Yang H L, Liu M, Guo W, Li R D, Zhang H G, Yan C J. Genetic analysis and position cloning of a yellowgreen leaf 10(yel10) gene, responsible for leaf color in rice[J]. Chinese Journal of Rice Science, 2014, 28(1): 41-48. (in Chinese with English abstract) | |
[32] | Sugiyama N, Izawa T, Oikawa T, Shimamoto K. Light regulation of circadian clock-controlled gene expression in rice[J]. The Plant Journal, 2001, 26(6): 607-615. |
[33] | Yamatani H, Kohzuma K, Nakano M, Takami T, Kato Y, Hayashi Y, Monden Y, Okumoto Y, Abe T, Kumamaru T, Tanaka A, Sakamoto W, Kusaba M. Impairment of Lhca4, a subunit of LHCI, causes high accumulation of chlorophyll and the stay-green phenotype in rice[J]. Journal of Experimental Botany, 2018, 69: 1027-1035. |
[34] | Hubbart S, Ajigboye O O, Horton P, Murchie E H. The photoprotective protein PsbS exerts control over CO2 assimilation rate in fluctuating light in rice[J]. The Plant Journal, 2012, 71(3): 402-412. |
[35] | Yang C, Hu H, Ren H, Kong Y, Lin H, Guo J, Wang L, He Y, Ding X, Grabsztunowicz M, Mulo P, Chen T, Liu Y, Wu Z, Wu Y, Mao C, Wu P, Mo X. LIGHT- INDUCED RICE1 regulates light-dependent attachment of leaf-type ferredoxin-NADP+ oxidoreductase to the thylakoid membrane in rice and Arabidopsis [J]. The Plant Cell, 2016, 28(3): 712-728. |
[36] | Zhang F, Zhang P, Zhang Y, Wang S, Qu L, Liu X, Luo J. Identification of a peroxisomal-targeted aldolase involved in chlorophyll biosynthesis and sugar metabolism in rice[J]. Plant Science, 2016, 250: 205-215. |
[1] | WU Jinshui, TANG Jiangying, TAN Li, GUO Zhiqiang, YANG Juan, ZHANG Xinzhen, CHEN Guifang, WANG Jianlong, SHI Wanju. Mechanisms of Arsenic Uptake and Transport in Rice and Agronomic Mitigation Strategies [J]. Chinese Journal OF Rice Science, 2025, 39(2): 143-155. |
[2] | MA Weiyi, ZHU Jizou, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, DIAO Liuyun, WANG Lulu, MENG Tianyao, GAO Pinglei, CHEN Yinglong, DAI Qigen, WEI Huanhe. Research Progress in Effects of Salt and Drought Stresses on Rice Quality Formation and Associated Physiological Mechanisms [J]. Chinese Journal OF Rice Science, 2025, 39(2): 156-170. |
[3] | ZHANG Laitong, YANG Le, LIU Hong, ZHAO Xueming, CHENG Tao, XU Zhenjiang. Research Advances of Fragrance Substances in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(2): 171-186. |
[4] | FENG Tao, ZHANG Zhaoyang, HUANG Xinni, WANG Yue, ZHONG Xuzhi, FENG Zhiming, LIU Xin, ZUO Shimin, OUYANG Shouqiang. Osa-miR166i-3 Positively Regulates Resistance to Sheath Blight Through Mediating the Accumulation of Reactive Oxygen Species [J]. Chinese Journal OF Rice Science, 2025, 39(2): 187-196. |
[5] | YAN Ying, WANG Kai, ZHANG Lixia, HU Zejun, YE Junhua, YANG Hang, GU Chunjun, WU Shujun. Development of a New High-Quality and Multi-Resistant japonica Rice Variety, Huxianggeng 216, Through Molecular Pyramiding Breeding [J]. Chinese Journal OF Rice Science, 2025, 39(2): 209-219. |
[6] | XU Yuemei, PENG Shiyan, SUN Zhiwei, WANG Zhiqin, ZHU Kuanyu, YANG Jianchang. Differences in Endogenous Hormone Levels and Their Relationship with Yield and Phosphorus Use Efficiency in Rice Varieties With Various Tolerance to Low Phosphorus Stress [J]. Chinese Journal OF Rice Science, 2025, 39(2): 231-244. |
[7] | TANG Chenghan, WANG Jingqing, CHEN Huizhe, ZHANG Yuping, XIANG Jing, ZHANG Yikai, WANG Zhigang, HUAI Yan, CHEN Jiafeng, WANG Yaliang. Effects of Hybrid Rice Seedling Quality in Drill-seeding Nursery on Grain Yield in Mechanical Transplanting [J]. Chinese Journal OF Rice Science, 2025, 39(2): 245-254. |
[8] | SHU Ao, XIE Jiaxin, CAO Wei, ZHOU Chuanming, LI Beilei, CHEN Jiaxin, LI Li, CAO Fangbo, CHEN Jiana, HUANG Min. Effect of Nitrogen Management Strategies on Yield and Grain Quality of High-quality Hybrid Mid-season Rice [J]. Chinese Journal OF Rice Science, 2025, 39(2): 255-263. |
[9] | SHAO Yafang, ZHU Dawei, ZHENG Xin, MOU Renxiang, ZHANG Linping, CHEN Mingxue. Development Status and Regional Differences of japonica Rice Quality in the Yangtze River Delta Region from 2002 to 2022 [J]. Chinese Journal OF Rice Science, 2025, 39(2): 264-276. |
[10] | SUI Jingjing, ZHAO Guilong, JIN Xin, BU Qingyun, TANG Jiaqi. Advances in Molecular and Physiological Mechanisms of Cold Tolerance Regulation of Rice at the Booting Stage [J]. Chinese Journal OF Rice Science, 2025, 39(1): 1-10. |
[11] | REN Ningning, SUN Yongjian, SHEN Congcong, ZHU Shuangbing, LI Huiju, ZHANG Zhiyuan, CHEN Kai. Research Progress in Rice Mesocotyl [J]. Chinese Journal OF Rice Science, 2025, 39(1): 11-23. |
[12] | XIAO Wuwei, ZHU Chenguang, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui. Research Progress in Rice Quality of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 33-46. |
[13] | CHEN Zhihui, TAO Yajun, FAN Fangjun, XU Yang, WANG Fangquan, LI Wenqi, GULINAER·Bahetibieke , JIANG Yanjie, ZHU Jianping, LI Xia, YANG Jie. Development and Application of a Functional Marker for Heading Date Gene Hd6 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 47-54. |
[14] | HU Fengyue, WANG Jian, WANG Chun, WANG Kejian, LIU Chaolei. Generation of Rice DMP1, DMP2 and DMP3 Mutants and Identification of Their Haploid Induction Ability [J]. Chinese Journal OF Rice Science, 2025, 39(1): 55-66. |
[15] | YANG Chuanming, WANG Lizhi, ZHANG Xijuan, YANG Xianli, WANG Yangyang, HOU Benfu, CUI Shize, LI Qingchao, LIU Kai, MA Rui, FENG Yanjiang, LAI Yongcai, LI Hongyu, JIANG Shukun. Analysis of QTL Controlling Cold Tolerance at Seedling Stage by Using a High-Density SNP Linkage Map in japonica Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 82-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||