Chinese Journal OF Rice Science ›› 2024, Vol. 38 ›› Issue (6): 685-694.DOI: 10.16819/j.1001-7216.2024.240503
• Research Papers • Previous Articles Next Articles
WU Xiang1,2, ZHANG Yikai2,*(), ZHANG Peng2, MA Xinling2, CHEN Yulin2, CHEN Huizhe2, ZHANG Yuping2, XIANG Jing2, WANG Yaliang2, WANG Zhigang2, LI Liangtao1,*(
)
Received:
2024-05-06
Revised:
2024-05-31
Online:
2024-11-10
Published:
2024-11-15
Contact:
*email: yikaizhang168@163.com;liliangtao@hebeu.edu.cn
毋翔1,2, 张义凯2,*(), 张鹏2, 马昕伶2, 陈玉林2, 陈惠哲2, 张玉屏2, 向镜2, 王亚梁2, 王志刚2, 李良涛1,*(
)
通讯作者:
*email: yikaizhang168@163.com;liliangtao@hebeu.edu.cn
基金资助:
WU Xiang, ZHANG Yikai, ZHANG Peng, MA Xinling, CHEN Yulin, CHEN Huizhe, ZHANG Yuping, XIANG Jing, WANG Yaliang, WANG Zhigang, LI Liangtao. Effects of 2,4-Epibrassinolide on Root Growth and Physiological Characteristics of Rice Seedlings Raised in Biochar Substrate[J]. Chinese Journal OF Rice Science, 2024, 38(6): 685-694.
毋翔, 张义凯, 张鹏, 马昕伶, 陈玉林, 陈惠哲, 张玉屏, 向镜, 王亚梁, 王志刚, 李良涛. 2,4-表油菜素内酯对生物炭基质育秧水稻秧苗根系生长及生理特性的影响[J]. 中国水稻科学, 2024, 38(6): 685-694.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2024.240503
基因 Gene | 正向引物 Forward sequence (5'-3') | 反向引物 Reverse sequence (5'-3') |
---|---|---|
Actin | TTATGGTTGGGATGGGACA | AGCACGGCTTGAATAGCG |
OsCATB | GGCAAGATCGTTTTCTCCAG | TGGTTTCAGGTTGAGACGTG |
OsCATC | AGAAGGTGGTGATTGCCAAG | CAGATGCTCCTGATCTCGTG |
OsAPX1 | CCAAGGGTTCTGACCACCTA | CAAGGTCCCTCAAAACCAGA |
OsAPX2 | AAGTGACAAAGCCCTCATGG | TCCTCAGCAAATCCCAGTTC |
OsCu/Zn SOD1 | TGTCCAAGAGGGAGATGGTC | ATCTTCTGGTGCTCCATGCT |
OsCu/Zn SOD2 | ACAGCCAGATCCCCCTTACT | TACGAGCGAACATGAACAGC |
Table 1. Primer sequences used in the study
基因 Gene | 正向引物 Forward sequence (5'-3') | 反向引物 Reverse sequence (5'-3') |
---|---|---|
Actin | TTATGGTTGGGATGGGACA | AGCACGGCTTGAATAGCG |
OsCATB | GGCAAGATCGTTTTCTCCAG | TGGTTTCAGGTTGAGACGTG |
OsCATC | AGAAGGTGGTGATTGCCAAG | CAGATGCTCCTGATCTCGTG |
OsAPX1 | CCAAGGGTTCTGACCACCTA | CAAGGTCCCTCAAAACCAGA |
OsAPX2 | AAGTGACAAAGCCCTCATGG | TCCTCAGCAAATCCCAGTTC |
OsCu/Zn SOD1 | TGTCCAAGAGGGAGATGGTC | ATCTTCTGGTGCTCCATGCT |
OsCu/Zn SOD2 | ACAGCCAGATCCCCCTTACT | TACGAGCGAACATGAACAGC |
Fig.1. Effects of different concentrations of 2,4-brassinolide on root growth of rice CK, EBR0.5, EBR1.0, EBR1.5, EBR2.0 refer to 0, 0.5, 1.0, 1.5, 2.0 mg/kg EBR exposure, respectively. The same below.
处理 Treatment | 株高 Plant height(cm) | 百株地下部干质量 Root dry weigh per 100 plants(g) | 百株地上部干质量 Shoot dry weigh per 100 plants(g) | 根冠比 Root-shoot ratio |
---|---|---|---|---|
CK | 12.4±0.6 b | 0.20±0.01 c | 0.90±0.03 b | 0.23±0.01 b |
EBR0.5 | 13.7±0.3 a | 0.23±0.01 b | 0.97±0.03 ab | 0.24±0.02 b |
EBR1.0 | 13.0±0.4 a | 0.23±0.01 b | 0.93±0.07 ab | 0.25±0.01 ab |
EBR1.5 | 13.8±0.6 a | 0.26±0.01 a | 0.99±0.01 a | 0.26±0.01 a |
EBR2.0 | 13.0±0.5 ab | 0.21±0.01 c | 0.91±0.04 b | 0.23±0.02 b |
Table 2. Effects of different concentrations of 2,4-epibrassinolide on biomass and morphology of rice seedlings
处理 Treatment | 株高 Plant height(cm) | 百株地下部干质量 Root dry weigh per 100 plants(g) | 百株地上部干质量 Shoot dry weigh per 100 plants(g) | 根冠比 Root-shoot ratio |
---|---|---|---|---|
CK | 12.4±0.6 b | 0.20±0.01 c | 0.90±0.03 b | 0.23±0.01 b |
EBR0.5 | 13.7±0.3 a | 0.23±0.01 b | 0.97±0.03 ab | 0.24±0.02 b |
EBR1.0 | 13.0±0.4 a | 0.23±0.01 b | 0.93±0.07 ab | 0.25±0.01 ab |
EBR1.5 | 13.8±0.6 a | 0.26±0.01 a | 0.99±0.01 a | 0.26±0.01 a |
EBR2.0 | 13.0±0.5 ab | 0.21±0.01 c | 0.91±0.04 b | 0.23±0.02 b |
处理 Treatment | 根系丙二醛含量 MDA content(nmol/g) | 根系过氧化氢含量 H2O2 content(μmol/g) | 叶片丙二醛含量 MDA content(nmol/g) | 叶片过氧化氢含量 H2O2 content(μmol/g) |
---|---|---|---|---|
CK | 9.31±0.10 a | 8.39±0.16 a | 14.81±0.48 a | 18.94±0.25 a |
EBR 0.5 | 8.12±0.02 c | 0.91±0.11 d | 14.62±0.18 a | 13.09±0.22 b |
EBR1.0 | 7.26±0.16 d | 1.29±0.14 c | 13.89±0.58 ab | 13.57±0.43 b |
EBR1.5 | 9.04±0.25 b | 1.36±0.15 c | 12.22±0.45 c | 11.22±0.55 c |
EBR2.0 | 9.24±0.11 ab | 1.55±0.11 b | 13.51±0.51 b | 18.54±0.57 a |
Table 3. Effects of various concentrations of 2,4-brassinolide on the contents of malondialdehyde and hydrogen peroxide in rice
处理 Treatment | 根系丙二醛含量 MDA content(nmol/g) | 根系过氧化氢含量 H2O2 content(μmol/g) | 叶片丙二醛含量 MDA content(nmol/g) | 叶片过氧化氢含量 H2O2 content(μmol/g) |
---|---|---|---|---|
CK | 9.31±0.10 a | 8.39±0.16 a | 14.81±0.48 a | 18.94±0.25 a |
EBR 0.5 | 8.12±0.02 c | 0.91±0.11 d | 14.62±0.18 a | 13.09±0.22 b |
EBR1.0 | 7.26±0.16 d | 1.29±0.14 c | 13.89±0.58 ab | 13.57±0.43 b |
EBR1.5 | 9.04±0.25 b | 1.36±0.15 c | 12.22±0.45 c | 11.22±0.55 c |
EBR2.0 | 9.24±0.11 ab | 1.55±0.11 b | 13.51±0.51 b | 18.54±0.57 a |
处理 Treatment | 根系可溶性糖含量 Root soluble sugar content (mg/g) | 根系可溶性蛋白含量 Root soluble protein content (mg/g) | 叶片可溶性糖含量 Soluble sugar content in leaves (mg/g) | 叶片可溶性蛋白含量 Soluble protein content in leaves (mg/g) |
---|---|---|---|---|
CK | 2.77±0.08 c | 2.09±0.01 d | 12.47±0.44 c | 18.04±1.26 d |
EBR 0.5 | 3.32±0.19 ab | 2.61±0.12 c | 15.32±0.12 a | 20.20±0.49 bc |
EBR1.0 | 2.78±0.06 c | 2.35±0.06 cd | 13.24±0.70 b | 18.64±0.28 cd |
EBR1.5 | 3.10±0.03 bc | 3.03±0.19 b | 13.47±0.50 b | 21.63±0.72 b |
EBR2.0 | 3.37±0.31 a | 3.32±0.16 a | 15.14±0.61 a | 24.83±0.45 a |
Table 4. Effects of different concentrations of 2,4-ebrassinolide on the contents of soluble sugars and soluble proteins in rice
处理 Treatment | 根系可溶性糖含量 Root soluble sugar content (mg/g) | 根系可溶性蛋白含量 Root soluble protein content (mg/g) | 叶片可溶性糖含量 Soluble sugar content in leaves (mg/g) | 叶片可溶性蛋白含量 Soluble protein content in leaves (mg/g) |
---|---|---|---|---|
CK | 2.77±0.08 c | 2.09±0.01 d | 12.47±0.44 c | 18.04±1.26 d |
EBR 0.5 | 3.32±0.19 ab | 2.61±0.12 c | 15.32±0.12 a | 20.20±0.49 bc |
EBR1.0 | 2.78±0.06 c | 2.35±0.06 cd | 13.24±0.70 b | 18.64±0.28 cd |
EBR1.5 | 3.10±0.03 bc | 3.03±0.19 b | 13.47±0.50 b | 21.63±0.72 b |
EBR2.0 | 3.37±0.31 a | 3.32±0.16 a | 15.14±0.61 a | 24.83±0.45 a |
[1] | 王亚梁, 朱德峰, 向镜, 陈惠哲, 张玉屏, 徐一成, 张义凯. 杂交稻低播量精量播种育秧及机插取秧特性[J]. 中国水稻科学, 2020, 34(4): 332-338. |
Wang Y L, Zhu D F, Xiang J, Chen H Z, Zhang Y P, Xu Y C, Zhang Y K. Characteristics of low-sowing precision seeding and mechanical transplanting of hybrid rice[J]. China Journal of Rice Science, 2020, 34(4): 332-338. (in Chinese with English abstract) | |
[2] | 司绍诚, 吴宇澄, 李远, 涂晨, 付传城, 骆永明. 耕地和草地土壤健康研究进展与展望[J]. 土壤学报, 2022, 59(3): 625-642. |
Si S C, Wu Y C, Li Y, Tu C, Fu C C, Luo Y M. Research progress and prospect of soil health in cultivated land and grassland[J]. Acta Pedologica Sinica, 2022, 59(3): 625-642. (in Chinese with English abstract) | |
[3] | 林育炯, 张均华, 胡继杰, 朱练峰, 曹小闯, 禹盛苗, 金千瑜. 不同类型基质对机插水稻秧苗生理特征及产量的影响[J]. 农业工程学报, 2016, 32(8): 18-26. |
Lin Y J, Zhang J H, Hu J J, Zhu L F, Cao X C, Yu S M, Jin Q Y. Effects of different types of substrates on physiological characteristics and yield of mechanically transplanted rice seedlings[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(8): 18-26. (in Chinese with English abstract) | |
[4] | 李亦昊. 沼渣和生物炭育秧基质对水稻秧苗生长影响[D]. 哈尔滨: 东北农业大学, 2023. |
Li Y H. Effects of biogas residue and biochar substrate on the growth of rice seedlings[D]. Harbin: Northeast Agricultural University, 2023. (in Chinese with English abstract) | |
[5] | 丁伟. 水稻育苗基质制备及成型工艺参数研究[D]. 长春: 吉林农业大学, 2023. |
Ding W. Study on preparation and molding process parameters of rice seedling substrate[D]. Changchun: Jilin Agricultural University, 2023. (in Chinese with English abstract) | |
[6] | 邓亮, 卢碧林, 王浩宇, 李鹏辉, 张志敏. 水稻育秧基质肥力特征、育秧效果及环境生态风险评价[J]. 浙江农业学报, 2016, 28(2): 312-317. |
Deng L, Lu B L, Wang H Y, Li Peng H, Zhang Z M. Fertility characteristics, seedling raising effect and environmental ecological risk assessment of rice seedling raising substrate[J]. Acta Agriculturae Zhejiangensis, 2016, 28(2): 312-317. (in Chinese with English abstract) | |
[7] | 沈巧梅, 赵泽松, 萧长亮, 孙桂芳, 王贺. 水稻育秧基质的理化性质及生产中存在的问题与对策[J]. 现代农业科技, 2012(19): 46-47. |
Shen Q M, Zhao Z S, Xiao C L, Sun G F, Wang H. Physicochemical properties of rice seedling substrate and problems and countermeasures in production[J]. Modern Agricultural Sciences and Technology, 2012(19): 46-47. (in Chinese with English abstract) | |
[8] | Zhang C, Zeng G M, Huang D L, Lai C, Chen M, Cheng M, Tang H H, Tang L, Dong H R, Huang B B. Biochar for environmental management: Mitigating greenhouse gas emissions, contaminant treatment, and potential negative impacts[J]. Chemical Engineering Journal, 2019, 23(373): 902-922. |
[9] | Yang Z, Sun T, Subdiaga E, Obst M, Haderlein SB, Maisch M, Kretzschmar R, Angenent LT, Kappler A. Aggregation-dependent electron transfer via redox-active biochar particles stimulate microbial ferrihydrite reduction[J]. Science of the Total Environment, 2020, 48(703): 135515. |
[10] | 高继平, 隋阳辉, 霍轶琼, 唐亮, 孟军, 张文忠, 陈温福. 生物炭用作水稻育苗基质的研究进展[J]. 作物杂志, 2014(2): 16-21. |
Gao J P, Duo Y H, Huo Y Q, Tang L, Meng J, Zhang W Z, Chen W F. Research progress of biochar as rice seedling substrate[J]. Crops, 2014(2): 16-21. (in Chinese with English abstract) | |
[11] | 李志刚, 刘晓刚, 李健. 硫酸铵与鸡粪配比在含生物质炭育苗基质中的应用效果[J]. 中国土壤与肥料, 2012, 48(1): 83-87. |
Li Z G, Liu X G, Li J. The application effect of the ratio of ammonium sulfate to chicken manure in the substrate containing biochar[J]. Soil and Fertilizer Sciences in China, 2012(1): 83-87. (in Chinese with English abstract) | |
[12] | 文中华, 刘喜雨, 孟军, 刘遵奇, 史国宏. 生物炭和腐熟秸秆组配基质对水稻幼苗生长的影响[J]. 沈阳农业大学学报, 2020, 51(1): 10-17. |
Wen Z H, Liu X Y, Meng J, Liu Z Q, Shi G H. Effects of combined substrates of biochar and decomposed straw on the growth of rice seedlings[J]. Journal of Shenyang Agricultural University, 2020, 51(1): 10-17. (in Chinese with English abstract) | |
[13] | Asadi H, Ghorbani M, Rezaei-Rashti M, Abrishamkesh S, Amirahmadi E, Chen C R, Gorji M. Application of rice husk biochar for achieving sustainable agriculture and environment[J]. Rice Science, 2021, 28(4): 325-343. |
[14] | Li Z Y, Zheng Z W, Li H C, Xu D, Li X, Xiang L J, Tu S X. Review on rice husk biochar as an adsorbent for soil and water remediation[J]. Plants, 2023, 12(7): 1524. |
[15] | 林肖庆, 吕豪豪, 刘玉学, 汪玉瑛, 杨生茂. 生物质原料及炭化温度对生物炭产率与性质的影响[J]. 浙江农业学报, 2016, 28(7): 1216-1223. |
Lin X Q, L H H, Liu Y X, et al. Effects of biomass raw materials and carbonization temperature on the yield and properties of biochar[J]. Acta Agriculturae Zhejiangensis, 2016, 28(7): 1216-1223. (in Chinese with English abstract) | |
[16] | 赵雪松, 王倩, 闫青地, 赵亚林, 王凤茹, 董金皋. 油菜素内酯对水稻根系发育的调控作用[J]. 中国细胞生物学学报, 2016, 38(10): 1191-1198. |
Zhao X S, Wang Q, Yan Q D, Zhao Y L, Wang F R, Dong J G. Regulation of brassinolide on rice root development[J]. Chinese Journal of Cell Biology, 2016, 38(10): 1191-1198. (in Chinese with English abstract) | |
[17] | 王黎明, 杨瑞珍, 孙加强. 油菜素内酯调控作物农艺性状和非生物胁迫响应的研究进展[J]. 生物工程学报, 2022, 38(1): 34-49. |
Wang L M, Yang R Z, Sun J Q. Research progress on the regulation of crop agronomic traits and abiotic stress responses by brassinolide[J]. Chinese Journal of Biotechnology, 2022, 38(1): 34-49. (in Chinese with English abstract) | |
[18] | 廖莎, 谭雪明, 李木英, 胡凯, 潘晓华, 石庆华. 稻草基质育秧不同芸薹素内酯处理对水稻秧苗生长的影响[J]. 江西农业大学学报, 2017, 39(5): 851-858. |
Liao S, Tang X M, Li M Y, Hu K, Pan X H, Shi Q H. Effects of different treatments of brassinolide on seedling growth of rice in straw substrates[J]. Acta Agricultural Universitatis Jiangxiensis, 2017, 39(5): 851-858. (in Chinese with English abstract) | |
[19] | 傅友强, 杨旭健, 吴道铭, 沈宏. 磷素对水稻根表红棕色铁膜的影响及营养效应[J]. 中国农业科学, 2014, 47(6): 1072-1085. |
Fu Y Q, Yang X J, Wu D M, Shen H. Effects of phosphorus on reddish-brown iron plaque on rice root surface and its nutritional effects[J]. China Agricultural Sciences, 2014, 47(6): 1072-1085. (in Chinese with English abstract) | |
[20] | 张志良, 瞿伟菁. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2003. |
Zhang Z L, Qu W J. Plant Physiology Experiment Guide[M]. Beijing: Higher Education Press, 2003. (in Chinese) | |
[21] | 李合生. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2000: 167-169. |
Li H S. Principles and Techniques of Plant Physiological and Biochemical Experiments[M]. Beijing: Higher Education Press, 2000: 167-169. (in Chinese) | |
[22] | 陈建勋, 王晓峰. 植物生理学模块实验指导[M]. 广州: 华南理工大学出版社, 2002: 120-123. |
Chen J X, Wang X F. Plant Physiology Module Experiment Guide[M]. Guangzhou: South China University of Technology Press, 2002: 120-123. (in Chinese) | |
[23] | 李玲. 植物生理学模块实验指导[M]. 北京: 科学出版社, 2009: 95-97. |
Li L. Plant Physiology Module Experiment Guide[M]. Beijing: Science Press, 2009: 95-97. (in Chinese) | |
[24] | 朱春权, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 金千瑜, 张均华. 不同属性特征基质对早稻秧苗耐低温的影响[J]. 中国水稻科学, 2021, 35(5): 503-512. |
Zhu C Q, Xu Q S, Cao X C, Zhu L F, Kong Y L, Jin Q Y, Zhang J H. Effects of different attribute characteristic substrates on low temperature tolerance of early rice seedlings[J]. China Journal of Rice Science, 2021, 35(5): 503-512. (in Chinese with English abstract) | |
[25] | 赵世杰. 植物生理学实验指导[M]. 北京: 中国农业科技出版社, 2004: 26-34. |
Zhao S J. Plant Physiology Experiment Guide[M]. Beijing: China Agricultural Science and Technology Press, 2004: 26-34. (in Chinese) | |
[26] | Shouichi Y, Douglas A F, James H C. Laboratory Manual for Physiological Studies of Rice[M]. Philippines: International Rice Research Institution, 1976. |
[27] | 朱春权, 魏倩倩, 项兴佳, 胡文君, 徐青山, 曹小闯, 朱练峰, 孔亚丽, 刘佳, 金千瑜, 张均华. 褪黑素和茉莉酸甲酯基质育秧对水稻耐低温胁迫的调控作用[J]. 作物学报, 2022, 48(8): 2016-2027. |
Zhu C Q, Wei Q Q, Xiang X J, Hu W J, Xu Q S, Cao X C, Zhu L F, Kong Y L, Liu J, Jin Q Y, Zhang J H. The regulatory effect of melatonin and methyl jasmonate substrate on the tolerance of rice to low temperature stress[J]. Acta Agronomica Sinica, 2022, 48(8): 2016-202. (in Chinese with English abstract) | |
[28] | 李睿, 董立强, 商文奇, 马亮, 王先俱, 王铮, 李跃东. 育秧基质和喷水间隔处理对机插秧苗素质及产量的影响[J]. 中国水稻科学, 2021, 35(1): 59-68. |
Li R, Dong L Q, Shang W Q, Ma L, Wang X J, Wang Z, Li Y D. Effects of seedling substrate and spraying interval on seedling quality and yield of mechanical transplanting[J]. China Journal of Rice Science, 2021, 35 (1): 59-68. (in Chinese with English abstract) | |
[29] | 周劲松, 闫平, 张伟明, 郑福余, 程效义, 陈温福. 生物炭对东北冷凉区水稻秧苗根系形态建成与解剖结构的影响[J]. 作物学报, 2017, 43(1): 72-81. |
Zhou J S, Yan P, Zhang W M, Zheng F Y, Chen X Y, Chen W F. Effects of biochar on root morphogenesis and anatomical structure of rice seedlings in cold region of Northeast China[J]. Acta Agronomica Sinica, 2017, 43 (1): 72-81. (in Chinese with English abstract) | |
[30] | Fridman Y, Elkouby L, Holland N, Vragovic K, Elbaum R, Savaldi-Goldstein S. Root growth is modulated by differential hormonal sensitivity in neighboring cells[J]. Genes & Development, 2014, 28(8): 912-920. |
[31] | 胡泽友, 邓小波, 彭喜旭, 何艳, 刘文海, 戴光宇, 王海华. 外源钙对镍胁迫下水稻幼苗抗氧化酶活性及膜脂过氧化的影响[J]. 中国水稻科学, 2007, (4): 367-371. |
Hu Z Y, Deng X B, Peng X X, He Y, Liu W H, Dai G Y, Wang H H. Effects of exogenous calcium on antioxidant enzyme activities and membrane lipid peroxidation in rice seedlings under nickel stress[J]. Chinese Journal of Rice Science, 2007, (4): 367-371. | |
[32] | Talaat N B, Shawky B T. 24-Epibrassinolide alleviates salt-induced inhibition of productivity by increasing nutrients and compatible solutes accumulation and enhancing antioxidant system in wheat (Triticum aestivum L.)[J]. Acta Physiologiae Plantarum, 2013, 35: 729-740. |
[33] | 廖莎, 谭雪明, 李木英, 胡凯, 潘晓华, 石庆华. 芸薹素内酯对稻草基质育秧水稻秧苗生理特性及栽后生长的影响[J]. 中国水稻科学, 2020, 34(2): 181-190. |
Liao S, Tan X M, Li M Y, Hu K, Pan X H, Shi Q H. Effects of brassinolide on physiological characteristics and post-planting growth of rice seedlings in rice straw substrate[J]. Chinese Journal of Rice Science, 2020, 34 (2): 181-190. (in Chinese with English abstract) | |
[34] | Zhou G Z, Liu C C, Cheng Y, Ruan M Y, Ye Q J, Wang R Q, Yao Z P, Wang H J. Molecular evolution and functional divergence of stress-responsive Cu/Zn superoxide dismutases in plants[J]. International Journal of Molecular Sciences, 2022, 23(13): 7082. |
[35] | Zhang Z G, Zhang Q, Wu J X, Zheng X, Zheng S, Sun X H, Qiu Q S, Lu T G. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses[J]. PloS ONE, 2013, 8(2): e57472. |
[36] | Jiang W X, Ye Q, Wu Z, Zhang Q Y, Wang L H, Liu J L, Hu X F, Guo D D, Wang X Q, Zhang Z L. Analysis of CAT gene family and functional identification of OsCAT3 in rice[J]. Genes, 2023, 14(1): 138. |
[1] |
SUI Jingjing, ZHAO Guilong, JIN Xin, BU Qingyun, TANG Jiaqi.
Advances in Molecular and Physiological Mechanisms of Cold Tolerance Regulation of Rice at the Booting Stage [J]. Chinese Journal OF Rice Science, 2025, 39(1): 1-10. |
[2] |
REN Ningning, SUN Yongjian, SHEN Congcong, ZHU Shuangbing, LI Huiju, ZHANG Zhiyuan, CHEN Kai.
Research Progress in Rice Mesocotyl [J]. Chinese Journal OF Rice Science, 2025, 39(1): 11-23. |
[3] |
XIAO Wuwei, ZHU Chenguang, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui.
Research Progress in Rice Quality of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 33-46. |
[4] |
CHEN Zhihui, TAO Yajun, FAN Fangjun, XU Yang, WANG Fangquan, LI Wenqi, GULINAER·Bahetibieke, JIANG Yanjie, ZHU Jianping, LI Xia, YANG Jie.
Development and Application of a Functional Marker for Heading Date Gene Hd6 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 47-54. |
[5] |
HU Fengyue, WANG Jian, WANG Chun, WANG Kejian, LIU Chaolei.
Generation of Rice DMP1, DMP2 and DMP3 Mutants and Identification of Their Haploid Induction Ability [J]. Chinese Journal OF Rice Science, 2025, 39(1): 55-66. |
[6] |
YANG Chuanming, WANG Lizhi, ZHANG Xijuan, YANG Xianli, WANG Yangyang, HOU Benfu, CUI Shize2, 4, LI Qingchao, LIU Kai4, MA Rui, FENG Yanjiang, LAI Yongcai, LI Hongyu, JIANG Shukun.
Analysis of QTL Controlling Cold Tolerance at Seedling Stage by Using a High-Density SNP Linkage Map in japonica Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 82-91. |
[7] |
CHEN Shurong, ZHU Lianfeng, QIN Birong, WANG Jie, Zhu Xuhua, TIAN Wenhao, ZHU Chunquan, CAO Xiaochuang, KONG Yali, ZHANG Junhua, JIN Qianyu.
Effects of Nitrification Inhibitors on Rice Growth, Yield and Nitrogen Use Efficiency Under Oxygenated Irrigation [J]. Chinese Journal OF Rice Science, 2025, 39(1): 92-100. |
[8] |
WU Meng, NI Chuan, KANG Yuying, MAO Yuxin, YE Miao, ZHANG Zujian.
Inter-varietal Differences in Early Tillering Characteristics and Their Responses to Nitrogen [J]. Chinese Journal OF Rice Science, 2025, 39(1): 101-114. |
[9] |
WANG Xiaoxi, CAI Chuang, SONG Lian, ZHOU Wei, YANG Xiong, GU Xinyue ZHU Chunwu.
Effect of Free-air CO2 Enrichment and Temperature Increase on Grain Quality of Rice Cultivar Yangdao 6 [J]. Chinese Journal OF Rice Science, 2025, 39(1): 115-127. |
[10] |
JIANG Min, WANG Guanglun, LI Minglu, MIAO Bo, LI Mingxuan, SHI Chunlin.
Risk Assessment and Dynamic Early Warming of Heat Damage in Rice Based on Simulation Model [J]. Chinese Journal OF Rice Science, 2025, 39(1): 128-142. |
[11] | YANG Jie, YANG Changdeng, ZENG Yuxiang, HOU Yuxuan, CHEN Tianxiao, LIANG Yan. Research Progress in Mining and Utilization of Rice Blast Resistance Genes [J]. Chinese Journal OF Rice Science, 2024, 38(6): 591-603. |
[12] | FENG Xiangqian, WANG Aidong, HONG Weiyuan, LI Ziqiu, QIN Jinhua, ZHAN Lichuan, CHEN Lipeng, ZHANG Yunbo, WANG Danying, CHEN Song. Research Progress in Rice Yield Estimation Method Based on Low-altitude Unmanned Aerial Vehicle Remote Sensing [J]. Chinese Journal OF Rice Science, 2024, 38(6): 604-616. |
[13] | YE Miao, MAO Yuxin, ZHANG Dehai, KANG Yuying, YUAN Rong, ZHANG Zujian. Advances in Leaf and Canopy Eco-physiological Characteristics of High Photosynthetic Efficiency Rice Varieties and Their Regulation Mechanisms by Nitrogen [J]. Chinese Journal OF Rice Science, 2024, 38(6): 617-626. |
[14] | WANG Qing, WANG Yanru, ZHANG Xiuli, LÜ Qiming. Sequence Variation Analysis of the Parthenogeny-inducing Gene BBM1 in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(6): 627-637. |
[15] | ZHONG Zhihu, QIN Lu, LI Zhili, YANG Zhen, HE Xiaopeng, CAI Yicong. Genome-wide Identification and Comprehensive Analysis of IDD Gene Family in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(6): 638-652. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||