Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (2): 156-170.DOI: 10.16819/j.1001-7216.2025.240607
• Reviews and Special Topics • Previous Articles Next Articles
MA Weiyi1, ZHU Jizou1, ZHU Wang1,2, GENG Xiaoyu1, ZHANG Xiang1, DIAO Liuyun1, WANG Lulu1,2, MENG Tianyao1,2, GAO Pinglei1, CHEN Yinglong1, DAI Qigen1, WEI Huanhe1,*()
Received:
2024-06-11
Revised:
2024-11-25
Online:
2025-03-10
Published:
2025-03-19
Contact:
WEI Huanhe
马唯一1, 朱济邹1, 朱旺1,2, 耿孝宇1, 张翔1, 刁刘云1, 汪璐璐1,2, 孟天瑶1,2, 高平磊1, 陈英龙1, 戴其根1, 韦还和1,*()
通讯作者:
韦还和
基金资助:
MA Weiyi, ZHU Jizou, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, DIAO Liuyun, WANG Lulu, MENG Tianyao, GAO Pinglei, CHEN Yinglong, DAI Qigen, WEI Huanhe. Research Progress in Effects of Salt and Drought Stresses on Rice Quality Formation and Associated Physiological Mechanisms[J]. Chinese Journal OF Rice Science, 2025, 39(2): 156-170.
马唯一, 朱济邹, 朱旺, 耿孝宇, 张翔, 刁刘云, 汪璐璐, 孟天瑶, 高平磊, 陈英龙, 戴其根, 韦还和. 盐害和干旱对稻米品质形成的影响及生理机制研究进展[J]. 中国水稻科学, 2025, 39(2): 156-170.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.240607
[1] | Zheng C, Liu C, Liu L, Tan Y N, Sheng X B, Yu D, Sun Z Z, Sun X W, Chen J, Yuan D Y, Duan M J. Effect of salinity stress on rice yield and grain quality: A meta-analysis[J]. European Journal of Agronomy, 2023, 144: 126765. |
[2] | Jeyasri R, Muthuramalingam P, Satish L, Pandian S K, Chen J T, Ahmar S, Wang X, Mora-Poblete F, Ramesh M. An overview of abiotic stress in cereal crops: Negative impacts, regulation, biotechnology and integrated omics[J]. Plants, 2021, 10(7): 1472. |
[3] | 程生海, 郭夏宇, 陶维旭, 冀俊超, 何爱斌, 艾治勇. 不同耐盐能力水稻品种响应盐胁迫的差异[J]. 杂交水稻, 2024, 39(2): 97-104. |
Cheng S H, Guo X Y, Tao W X, Ji J C, He A B, Ai Z Y. Differences in response to salt stress of rice varieties with different salt tolerance[J]. Hybrid Rice, 2024, 39(2): 97-104. (in Chinese with English abstract) | |
[4] | 凌荣模. 旱种水稻生育特性与产量形成研究[J]. 种子科技, 2024, 42(8): 146-148. |
Ling R M. Study on growth characteristics and yield formation of upland rice[J]. Seed Science & Technology, 2024, 42(8): 146-148. (in Chinese with English abstract) | |
[5] | 肖丹丹, 李军, 邓先亮, 卫平洋, 唐健, 韦还和, 陈英龙, 戴其根. 不同品种稻米品质形成对盐胁迫的响应[J]. 核农学报, 2020, 34(8): 1840-1847. |
Xiao D D, Li J, Deng X L, Wei P Y, Tang J, Wei H H, Chen Y L, Dai Q G. Response of quality formation of different rice varieties to salt stres[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(8): 1840-1847. (in Chinese with English abstract) | |
[6] | 周根友, 翟彩娇, 邓先亮, 张蛟, 张振良, 戴其根, 崔士友. 盐逆境对水稻产量、光合特性及品质的影响[J]. 中国水稻科学, 2018, 32(2): 146-154. |
Zhou G Y, Zhai C J, Deng X L, Zhang J, Zhang Z L, Dai Q G, Cui S Y. Performance of yield, photosynthesis and grain quality of japonica rice cultivars under salinity stress in micro-plots[J]. Chinese Journal of Rice Science, 2018, 32(2): 146-154. (in Chinese with English abstract) | |
[7] | 翟彩娇, 邓先亮, 张蛟, 戴其根, 崔士友. 盐分胁迫对稻米品质性状的影响[J]. 中国稻米, 2020, 26(2): 44-48. |
Zhai C J, Deng X L, Zhang J, Dai Q G, Cui S Y. Effects of salt stress on quality traits of japonica rice[J]. China Rice, 2020, 26(2): 44-48. (in Chinese with English abstract) | |
[8] | Li Z K, Zhou T Y, Zhu K Y, Wang W L, Zhang W Y, Zhang H, Liu L J, Zhang Z J, Wang Z Q, Wang B X, Xu D Y, Gu J F, Yang J C. Effects of salt stress on grain yield and quality parameters in rice cultivars with differing salt tolerance[J]. Plants, 2023, 12(18): 3243. |
[9] | 杨晓龙, 程建平, 汪本福, 李阳, 张枝盛, 李进兰, 李萍. 灌浆期干旱胁迫对水稻生理性状和产量的影响[J]. 中国水稻科学, 2021, 35(1): 38-46. |
Yang X L, Cheng J P, Wang B F, Li Y, Zhang Z S, Li J L, Li P. Effects of drought stress at grain filling stage on rice physiological characteristics and yield[J]. Chinese Journal of Rice Science, 2021, 35(1): 38-46. (in Chinese with English abstract) | |
[10] | 王平荣, 邓晓建, 高晓玲, 陈静, 万佳, 姜华, 徐正君. 干旱对稻米品质的影响研究[J]. 中国农学通报, 2004, 20(6): 282-284+324. |
Wang P R, Deng X J, Gao X L, Chen J, Wan J, Jiang H, Xu Z J. Effect of drought on rice quality[J]. Chinese Agricultural Science Bulletin, 2004, 20(6): 282-284+324. (in Chinese with English abstract) | |
[11] | 梁嘉荧, 蔡一霞. 高温干旱对水稻产量、品质及剑叶生理特性影响研究综述[J]. 中国农学通报, 2013, 29(27): 1-6. |
Liang J Y, Cai Y X. Review on the effects of high temperature and drought on yield, grain quality and the physiological characteristic of flag leaves in rice (Oryza sativa L.)[J]. Chinese Agricultural Science Bulletin, 2013, 29(27): 1-6. (in Chinese with English abstract) | |
[12] | 王成瑷, 王伯伦, 张文香, 赵磊, 赵秀哲, 高连文, 侯文平. 不同生育时期干旱胁迫对水稻产量与碾米品质的影响[J]. 中国水稻科学, 2007, 21(6): 643-649. |
Wang C A, Wang B L, Zhang W X, Zhao L, Zhao X Z, Gao L W, Hou W P. Effects of drought stress at different growth stages on grain yield and milling quality of rice[J]. Chinese Journal of Rice Science, 2007, 21(6): 643-649. (in Chinese with English abstract) | |
[13] | 刘红江, 倪新华, 郭智, 张丽萍, 周炜, 盛婧, 陈留根, 张岳芳. 收获前断水天数对优良食味水稻稻米品质的影响[J]. 江苏农业学报, 2023, 39(2): 352-359. |
Liu H J, Ni X H, Guo Z, Zhang L P, Zhou W, Sheng J, Chen L G, Zhang Y F. Effect of water cut off days before harvest on rice quality of good taste rice[J]. Jiangsu Journal of Agricultural Sciences, 2023, 39(2): 352-359. (in Chinese with English abstract) | |
[14] | 何进宇, 刘飞杨, 杨佳鹤, 崔烜玮. 干旱地区水盐胁迫对水稻产量构成及稻谷品质的影响研究[J]. 节水灌溉, 2024(1): 33-43. |
He J Y, Liu F Y, Yang J H, Cui X W. Effects of water and salt stress on yield components and quality of rice in arid area[J]. Water Saving Irrigation, 2024(1): 33-43. (in Chinese with English abstract) | |
[15] | Zhou T, Chen L, Wang W, Xu Y J, Zhang W Y, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C. Effects of application of rapeseed cake as organic fertilizer on rice quality at high yield level[J]. Journal of the Science of Food and Agriculture, 2022, 102(5): 1832-1841. |
[16] | Zhang R, Wang Y, Hussain S, Yang S, Li R K, Liu S L, Chen Y L, Wei H H, Dai Q G, Hou H Y. Study on the effect of salt stress on yield and grain quality among different rice varieties[J]. Frontiers in Plant Science, 2022, 13: 918460. |
[17] | 钟顺成, 李鑫, 毛艇, 张丽丽, 赵一州, 倪善君, 刘研, 王诗宇, 张战. 不同水稻品种品质特性对高浓度盐胁迫的响应[J]. 北方水稻, 2022, 52(1): 25-28. |
Zhong S C, Li X, Mao T, Zhang L L, Zhao Y Z, Ni S J, Liu Y, Wang S Y, Zhang Z. Response of high salt concentration on the quality of different varieties of rice[J]. North Rice, 2022, 52(1): 25-28. (in Chinese with English abstract) | |
[18] | 陈亮. 干旱胁迫对水稻叶片光合作用和产量及稻米品质的影响研究[D]. 武汉: 华中农业大学, 2015. |
Chen L. Effects of drought stress on leaf photosynthesis, yield, and rice quality[D]. Wuhan: Huazhong Agricultural University, 2015. (in Chinese with English abstract) | |
[19] | 刘凯, 张耗, 张慎凤, 王志琴, 杨建昌. 结实期土壤水分和灌溉方式对水稻产量与品质的影响及其生理原因[J]. 作物学报, 2008, 34(2): 268-276. |
Liu K, Zhang H, Zhang S F, Wang Z Q, Yang J C. Effects of soil moisture and irrigation patterns during grain filling on grain yield and quality of rice and their physiological mechanism[J]. Acta Agronomica Sinica, 2008, 34(2): 268-276. (in Chinese with English abstract) | |
[20] | 熊若愚, 解嘉鑫, 谭雪明, 杨陶陶, 潘晓华, 曾勇军, 石庆华, 张俊, 才硕, 曾研华. 不同灌溉方式对南方优质食味晚籼稻产量及品质的影响[J]. 中国农业科学, 2021, 54(7): 1512-1524. |
Xiong R Y, Xie J X, Tan X M, Yang T T, Pan X H, Zeng Y J, Shi Q H, Zhang J, Cai S, Zeng Y H. Effects of irrigation management on grain yield and quality of high-quality eating late-season indica rice in South China[J]. Scientia Agricultura Sinica, 2021, 54(7): 1512-1524. (in Chinese with English abstract) | |
[21] | Yao D P, Wu J, Luo Q H, Li J W, Zhuang W, Xiao G, Deng Q Y, Lei D Y, Bai B l. Influence of high natural field temperature during grain filling stage on the morphological structure and physicochemical properties of rice (Oryza sativa L.) starch[J]. Food Chemistry, 2020, 310: 125817. |
[22] | Yao D P, Wu J, Luo Q H, Zhang D M, Zhuang W, Xiao G, Deng Q Y, Bai B. Effects of salinity stress at reproductive growth stage on rice (Oryza sativa L.) composition, starch structure, and physicochemical properties[J]. Frontiers in Nutrition, 2022, 9: 926217. |
[23] | Guo K, Liang W X, Wang S J, Guo D W, Liu F, Persson S, Herburger K, Petersen B L, Liu X X, Blennow A, Zhong Y. Strategies for starch customization: Agricultural modification[J]. Carbohydrate Polymers, 2023, 321: 121336. |
[24] | Prathap V, Ali K, Singh A, Vishwakarma C, Krishnan V, Chinnusamy V, Tyagi A. Starch accumulation in rice grains subjected to drought during grain filling stage[J]. Plant Physiology and Biochemistry, 2019, 142: 440-451. |
[25] | Basu S, Shekhar S, Kumar A, Kumari S, Kumari N, Kumari S, Kumar S, Prasad R, Kumar G. Effect of stage-specific and multi-stage drought on grain nutrient quality in rice[J]. Plant Growth Regulation, 2023, 100(2): 561-571. |
[26] | Fan X L, Li Y Q, Lu Y, Zhang C Q, Li E P, Li Q F, Tao K Y, Yu W W, Wang J D, Chen Z Z, Zhu Y, Liu Q. The interaction between amylose and amylopectin synthesis in rice endosperm grown at high temperature[J]. Food Chemistry, 2019, 301: 125258. |
[27] | Deng F, Yang F, Li Q P, Zeng Y L, Li B, Zhong X Y, Lu H, Wang L, Chen H, Chen Y, Ren W. Differences in starch structural and physicochemical properties and texture characteristics of cooked rice between the main crop and ratoon rice[J]. Food Hydrocolloids, 2021, 116:106643. |
[28] | 许锐, 隋勇, 李书艺, 祝振洲, 周雷, 施建斌, 蔡沙, 熊添, 蔡芳, 梅新. 稻米食味品质影响因素研究进展[J]. 食品安全质量检测学报, 2024, 15(7): 234-241. |
Xu R, Sui Y, Li S Y, Zhu Z Z, Zhou L, Shi J B, Cai S, Xiong T, Cai F, Mei X. Research progress on influencing factors of rice eating quality[J]. Journal of Food Safety and Quality, 2024, 15(7): 234-241. (in Chinese with English abstract) | |
[29] | 高焕晔, 王三根, 宗学凤, 腾中华, 赵芳明, 刘照. 灌浆结实期高温干旱复合胁迫对稻米直链淀粉及蛋白质含量的影响[J]. 中国生态农业学报, 2012, 20(1): 40-47. |
Gao H Y, Wang S G, Zong X F, Teng Z H, Zhao F M, Liu Z. Effects of high-temperature drought compound stress during grain filling on amylose and protein content of rice[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 40-47. (in Chinese with English abstract) | |
[30] | Chen F Q, Fang P, Zeng W J, Ding Y F, Zhuang Z L, Peng Y L. Comparing transcriptome expression profiles to reveal the mechanisms of salt tolerance and exogenous glycine betaine mitigation in maize seedlings[J]. PLoS One, 2020, 15(5): e0233616. |
[31] | 罗成科, 肖国举, 张峰举, 李茜. 不同浓度复合盐胁迫对水稻产量和品质的影响[J]. 干旱区资源与环境, 2017, 31(1): 137-141. |
Luo C K, Xiao G J, Zhang F J, Li Q. Effects of different salt stresses on rice yield and quality[J]. Journal of Arid Land Resources and Environment, 2017, 31(1): 137-141. (in Chinese with English abstract) | |
[32] | Sangwongchai W, Krusong K, Thitisaksakul M. Salt tolerance at vegetative stage is partially associated with changes in grain quality and starch physicochemical properties of rice exposed to salinity stress at reproductive stage[J]. Journal of the Science of Food and Agriculture, 2022, 102(1): 370-382. |
[33] | 谷亚娟, 李景鹏, 杨福, 张鑫. 盐碱胁迫对水稻稻壳和籽粒中矿质元素含量的影响[J]. 土壤与作物, 2019, 8(1): 50-59. |
Gu Y J, Li J P, Yang F, Zhang X. Effects of saline-alkaline stress on mineral element contents in rice husk and grain[J]. Soils and Crops, 2019, 8(1): 50-59. (in Chinese with English abstract) | |
[34] | 杨晓龙, 王彪, 汪本福, 张枝盛, 张作林, 杨蓝天, 程建平, 李阳. 不同水分管理方式对旱直播水稻产量和稻米品质的影响[J]. 中国水稻科学, 2023, 37(3): 285-294. |
Yang X L, Wang B, Wang B F, Zhang Z S, Zhang Z L, Yang L T, Cheng J P, Li Y. Effects of different water management on yield and rice quality of dry-seeded rice[J]. Chinese Journal of Rice Science, 2023, 37(3): 285-294. (in Chinese with English abstract) | |
[35] | Lodeyro A F, Carrillo N. Salt stress in higher plants: mechanisms of toxicity and defensive responses[J]. Stress Responses in Plants: Mechanisms of Toxicity and Tolerance, 2015, 1: 33. |
[36] | Akim M A, Juraimi A S, Hanafi M M, Ismail M R, Rafii M Y, Islam M M, Selamat A J J. The effect of salinity on growth, ion accumulation and yield of rice varieties[J]. JAPS: Journal of Animal & Plant Sciences, 2014, 24(3): 874-885. |
[37] | Park H J, Kim W Y, Yun D J. A new insight of salt stress signaling in plant[J]. Molecules and Cells, 2016, 39(6): 447. |
[38] | Liang X W, Zhang L, Natarajan S K, Becker D F. Proline mechanisms of stress survival[J]. Antioxidants & Redox Signaling, 2013, 19(9): 998-1011. |
[39] | Nounjan N, Nghia P T, Theerakulpisut P. Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes[J]. Journal of Plant Physiology, 2012, 169(6): 596-604. |
[40] | 颜佳倩, 顾逸彪, 薛张逸, 周天阳, 葛芊芊, 张耗, 刘立军, 王志琴, 顾骏飞, 杨建昌, 周振玲, 徐大勇. 耐盐性不同水稻品种对盐胁迫的响应差异及其机制[J]. 作物学报, 2022, 48(6): 1463-1475. |
Yan J Q, Gu Y B, Xue Z Y, Zhou T Y, Ge Q Q, Zhang H, Liu L J, Wang Z Q, Gu J F, Yang J C, Zhou Z L, Xu D Y. Different responses of rice cultivars to salt stress and the underlying mechanisms[J]. Acta Agronomica Sinica, 2022, 48(6): 1463-1475. (in Chinese with English abstract) | |
[41] | Karthikeyan A, Pandian S K, Ramesh M. Transgenic indica rice cv. ADT 43 expressing a Δ 1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2011, 107: 383-395. |
[42] | Chen T H, Murata N. Glycinebetaine: An effective protectant against abiotic stress in plants[J]. Trends in plant science, 2008, 13(9): 499-505. |
[43] | Redillas M C F R, Jeong J S, Kim Y S, Jung H, Bang S W, Choi Y D, Ha S H, Reuzeau C, Kim J K. The overexpression of OsNAC9 alters the root architecture of rice plants enhancing drought resistance and grain yield under field conditions[J]. Plant Biotechnology Journal, 2012, 10(7): 792-805. |
[44] | Keisham M, Mukherjee S, Bhatla S C. Mechanisms of sodium transport in plants—progresses and challenges[J]. International Journal of Molecular Sciences, 2018, 19(3): 647. |
[45] | Shabala S, Shabala L. Ion transport and osmotic adjustment in plants and bacteria[J]. Biomolecular Concepts, 2011, 2(5): 407-419. |
[46] | 韦还和, 马唯一, 左博源, 汪璐璐, 朱旺, 耿孝宇, 张翔, 孟天瑶, 陈英龙, 高平磊, 许轲, 霍中洋, 戴其根. 盐、干旱及其复合胁迫对水稻产量和品质形成影响的研究进展[J]. 中国水稻科学, 2024, 38(4): 350-363. |
Wei H H, Ma W Y, Zuo B Y, Wang L L, Zhu W, Geng X Y, Zhang X, Meng T Y, Chen Y L, Gao P L, Xu K, Huo Z Y, Dai Q G. Research progress in the effect of salinity, drought, and their combined stresses on rice yield and quality formation[J]. Chinese Journal of Rice Science, 2024, 38(4): 350-363. (in Chinese with English abstract) | |
[47] | Shahadat H M, Fazlul K M, Masayuki F, Borhannuddin B M H M, Kamrun N, Chowdhury M A A, Al M J, Mirza H. Comparative physiology of indica and japonica rice under salinity and drought stress: An intrinsic study on osmotic adjustment, oxidative stress, antioxidant defense and methylglyoxal detoxification[J]. Stresses, 2022, 2(2): 156-178. |
[48] | Geng A J, Lian W L, Wang Y H, Liu M H, Zhang Y, Wang X, Chen G. Molecular mechanisms and regulatory pathways underlying drought stress response in rice[J]. International Journal of Molecular Sciences, 2024, 25(2): 1185. |
[49] | Joshi R, Sahoo K K, Singh A K, Anwar K, Pundir P, Gautam R K, Krishnamurthy S L, Sopory S K, Pareek A, Singla-Pareek S L. Enhancing trehalose biosynthesis improves yield potential in marker-free transgenic rice under drought, saline, and sodic conditions[J]. Journal of Experimental Botany, 2020, 71(2): 653-668. |
[50] | 韩明珍, 王静, 赵均良, 周玲艳, 马雅美. 水稻抗旱相关功能基因的克隆及分子机制研究进展[J]. 中国稻米, 2024, 30(5): 30-40+48. |
Han M Z, Wang J, Zhao J L, Zhou L Y, Ma Y M. Research progress on cloning and molecular mechanisms of drought-resistant functional genes in rice[J]. China Rice, 2024, 30(5): 30-40+48. (in Chinese with English abstract) | |
[51] | Qin H, Huang R. The phytohormonal regulation of Na+/K+ and reactive oxygen species homeostasis in rice salt response[J]. Molecular Breeding, 2020, 40(5): 47. |
[52] | Liu C T, Mao B G, Yuan D Y, Chu C C, Duan M J. Salt tolerance in rice: Physiological responses and molecular mechanisms[J]. The Crop Journal, 2022, 10(1): 13-25. |
[53] | 周振玲, 林兵, 周群, 杨波, 刘艳, 周天阳, 王宝祥, 顾骏飞, 徐大勇, 杨建昌. 耐盐性不同水稻品种对盐胁迫的响应及其生理机制[J]. 中国水稻科学, 2023, 37(2): 153-165. |
Zhou Z L, Lin B, Zhou Q, Yang B, Liu Y, Zhou T Y, Wang B X, Gu J F, Xu D Y, Yang J C. Responses of rice varieties differing in salt tolerance to salt stress and their physiological mechanisms[J]. Chinese Journal of Rice Science, 2023, 37(2): 153-165. (in Chinese with English abstract) | |
[54] | 顾逸彪, 颜佳倩, 薛张逸, 束晨晨, 张伟杨, 张耗, 刘立军, 王志琴, 周振玲, 徐大勇, 杨建昌, 顾骏飞. 耐盐性不同水稻品种根系对盐胁迫的响应差异及其机理研究[J]. 作物杂志, 2023, 38(2): 67-76. |
Gu Y B, Yan J Q, Xue Z Y, Shu C C, Zhang W Y, Zhang H, Liu L J, Wang Z Q, Zhou Z L, Xu D Y, Yang J C, Gu J F. Root response differences and mechanisms to salt stress among rice varieties with different salt tolerance[J]. Crops, 2023, 38(2): 67-76. (in Chinese with English abstract) | |
[55] | Lin H X, Yang Y Q, Quan R D, Mendoza I, Wu Y S, Du W M, Zhao S S, Schumaker K S, Pardo J M, Guo Y. Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis[J]. The Plant Cell, 2009, 21(5): 1607-1619. |
[56] | 韦海敏, 陶伟科, 周燕, 闫飞宇, 李伟玮, 丁艳锋, 刘正辉, 李刚华. 硅素穗肥优化滨海盐碱地水稻矿质元素吸收分配提高耐盐性[J]. 作物学报, 2023, 49(5): 1339-1349. |
Wei H M, Tao W K, Zhou Y, Yan F Y, Li W W, Ding Y F, Liu Z H, Li G H. Optimization of silicate panicle fertilizer enhances mineral element absorption and distribution in rice under saline-alkali conditions[J]. Acta Agronomica Sinica, 2023, 49(5): 1339-1349. (in Chinese with English abstract) | |
[57] | Hniličková H, Hnilička F, Martinková J, Kraus K. Effects of salt stress on water status, photosynthesis and chlorophyll fluorescence of rocket[J]. Plant, Soil and Environment, 2017, 63(8): 362-367. |
[58] | Wang X X, Wang W C, Huang J L, Peng S B, Xiong D L. Diffusional conductance to CO2 is the key limitation to photosynthesis in salt‐stressed leaves of rice (Oryza sativa L.)[J]. Physiologia Plantarum, 2018, 163(1): 45-58. |
[59] | Yang X Y, Lu M Q, Wang Y F, Wang Y R, Liu Z J, Chen S. Response mechanism of plants to drought stress[J]. Horticulturae, 2021, 7(3): 50. |
[60] | 朱旺, 张翔, 耿孝宇, 张哲, 陈英龙, 韦还和, 戴其根, 许轲, 朱广龙, 周桂生, 孟天瑶. 盐-旱复合胁迫下水稻根系的形态和生理特征及其与产量形成的关系[J]. 中国水稻科学, 2023, 37(6): 617-627. |
Zhu W, Zhang X, Geng X Y, Zhang Z, Chen Y L, Wei H H, Dai Q G, Xu K, Zhu G L, Zhou G S, Meng T Y. Morphological and physiological characteristics of rice roots under combined salinity-drought stress and their relationships with yield formation[J]. Chinese Journal of Rice Science, 2023, 37(6): 617-627. (in Chinese with English abstract) | |
[61] | 孙怡诗. 外源硅对盐胁迫下水稻耐盐性的影响研究综述[J]. 南方农业, 2024, 18(12): 35-37. |
Sun Y S. Research review on the effects of exogenous silicon on rice salt tolerance under salt stress[J]. Southern Agriculture, 2024, 18(12): 35-37. (in Chinese with English abstract) | |
[62] | Allakhverdiev S I. Optimizing photosynthesis for environmental fitness[J]. Functional Plant Biology, 2020, 47(11): iii-vii. |
[63] | dos Santos V A H F d, Ferreira M J, Rodrigues J V F C, Garcia M N, Ceron J V B, Nelson B W, Saleska S R. Causes of reduced leaf‐level photosynthesis during strong El Niño drought in a Central Amazon forest[J]. Global Change Biology, 2018, 24(9): 4266-4279. |
[64] | Ping M A, Bai T H. Effects of progressive drought on photosynthesis and partitioning of absorbed light in apple trees[J]. Journal of Integrative Agriculture, 2015, 14(4): 681-690. |
[65] | 张文龙, 时红, 才硕, 郭巧玲, 许小华, 王海媛, 唐晓晓, 万绍媛. 水稻干旱时空演变规律及其补偿效应研究进展[J]. 江苏农业科学, 2024, 52(12): 8-17. |
Zhang W L, Shi H, Cai S, Guo Q L, Xu X H, Wang H Y, Tang X X, Wan S Y. Research progress on spatiotemporal evolution and compensation effects of drought in rice[J]. Jiangsu Agricultural Sciences, 2024, 52(12): 8-17. (in Chinese with English abstract) | |
[66] | Bose J, Rodrigo-Moreno A, Shabala S. ROS homeostasis in halophytes in the context of salinity stress tolerance[J]. Journal of Experimental Botany, 2014, 65(5): 1241-1257. |
[67] | Hasanuzzaman M, Bhuyan M H M B, Parvin K, Bhuiyan T F, Anee T I, Nahar K, Hossen M S, Zulfiqar F, Alam M M, Fujita M. Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence[J]. International Journal of Molecular Sciences, 2020, 21(22): 8695. |
[68] | Kim Y H, Khan A L, Waqas M, Lee I J. Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: A review[J]. Frontiers in Plant Science, 2017, 8: 510. |
[69] | Vighi I L, Benitez L C, Amaral M N, Moraes G P, Auler P A, Rodrigues G S, Deuner S, Maia L C, Braga E J B. Functional characterization of the antioxidant enzymes in rice plants exposed to salinity stress[J]. Biologia Plantarum, 2017, 61(3): 540-550. |
[70] | 郭展, 张运波. 水稻对干旱胁迫的生理生化响应及分子调控研究进展[J]. 中国水稻科学, 2024, 38(4): 335-349. |
Guo Z, Zhang Y B. Research progress in physiological, biochemical responses of rice to drought stress and its molecular regulation[J]. Chinese Journal of Rice Science, 2024, 38(4): 335-349. (in Chinese with English abstract) | |
[71] | 赵宏伟, 王新鹏, 于美芳, 沙汉景, 贾琰, 于天聪, 邹德堂. 分蘖期干旱胁迫及复水对水稻抗氧化系统及脯氨酸影响[J]. 东北农业大学学报, 2016, 47(2): 1-7. |
Zhao H W, Wang X P, Yu M F, Sha H J, Jia Y, Yu T C, Zou D T. Effects of drought stress and rehydration at tillering stage on antioxidant system and proline in rice[J]. Journal of Northeast Agricultural University, 2016, 47(2): 1-7. (in Chinese with English abstract) | |
[72] | Zhang W Y, Chen Y J, Wang Z Q, Yang J C. Polyamines and ethylene in rice young panicles in response to soil drought during panicle differentiation[J]. Plant Growth Regulation, 2017, 82: 491-503. |
[73] | Kumar G, Basu S, Singla-Pareek S L, Pareek A. Unraveling the contribution of OsSOS2 in conferring salinity and drought tolerance in a high-yielding rice[J]. Physiologia Plantarum, 2022, 174(1): e13638. |
[74] | Hu Y, Wu Q, Peng Z, Sprague S A, Wang W, Park J, Akhunov E, Jagadish K S V, Nakata P A, Cheng N, Hirschi K D, White F F, Park S. Silencing of OsGRXS17 in rice improves drought stress tolerance by modulating ROS accumulation and stomatal closure[J]. Scientific Reports, 2017, 7(1): 15950. |
[75] | Saeedipour S. The combined effects of salinity and foliar spray of different hormones on some biological aspects, dry matter accumulation and yield in two varieties of indica rice differing in their level of salt tolerance[J]. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2014, 84: 721-733. |
[76] | Liu Z G, Ma C Y, Hou L, Wu X Z, Wang D, Zhang L, Liu P. Exogenous SA affects rice seed germination under salt stress by regulating Na+/K+ balance and endogenous GAs and ABA homeostasis[J]. International Journal of Molecular Sciences, 2022, 23(6): 3293. |
[77] | Mu D W, Feng N J, Zheng D F, Zhou H, Liu L, Chen G J, Mu B M. Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings[J]. Scientific Reports, 2022, 12(1): 20439. |
[78] | Verma P, Azad C S, Singh P K. Quantitative analysis of ABA and SA in rice (Oryza sativa L.) grown under drought stress[J]. Journal of Climate Change, 2022, 8(2): 1-6. |
[79] | Rasheed A, Hassan M U, Aamer M, Batool M, Sheng F, Wu Z, Li H. A critical review on the improvement of drought stress tolerance in rice (Oryza sativa L.)[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2020, 48(4): 1756-1788. |
[80] | Wang G, Zhang J. Carbohydrate, hormone and enzyme regulations of rice grain filling under post-anthesis soil drying[J]. Environmental and Experimental Botany, 2020, 178: 104165. |
[81] | Yang J C, Zhang J H, Wang Z Q, Xu G W, Zhu Q S. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling[J]. Plant Physiology, 2004, 135(3): 1621-1629. |
[82] | Xu Y J, Jian C Q, Li K, Tian Y F, Zhu K Y, Zhang W Y, Wang W L, Wang Z Q, Yang J C. High ethylene level impedes amino acid biosynthesis in rice grains[J]. Plant Growth Regulation, 2022, 96(1): 51-65. |
[83] | Bhandari U, Gajurel A, Khadka B, Thapa I, Chand I, Bhatta D, Poudel A, Pandey M, Shrestha S, Shrestha J. Morpho-physiological and biochemical response of rice (Oryza sativa L.) to drought stress: A review[J]. Heliyon, 2023, 9(3): e13744. |
[84] | Aslam M M, Rashid M A R, Siddiqui M A, Khan M T, Farhat F, Yasmeen S, Khan I A, Raja S, Rasool F, Ali Sial M, Yan Z. Recent insights into signaling responses to cope drought stress in rice[J]. Rice Science, 2022, 29(2): 105-117. |
[85] | Piveta L B, Roma-Burgos N, Noldin J A, Viana V E, de Oliveira C, Lamego F P, de Avila L A. Molecular and physiological responses of rice and weedy rice to heat and drought stress[J]. Agriculture, 2020, 11(1): 1-21. |
[86] | Guo L Y, Lu Y Y, Bao S Y, Zhang Q, Geng Y Q, Shao X W. Carbon and nitrogen metabolism in rice cultivars affected by salt-alkaline stress[J]. Crop and Pasture Science, 2021, 72(5): 372-382. |
[87] | 刘海波, 魏玉清, 周维松, 邹程. 土壤盐分胁迫对甜高粱茎秆糖分积累及蔗糖代谢相关酶活性的影响[J]. 西北农林科技大学学报(自然科学版), 2017, 45(5): 41-47+56. |
Liu H B, Wei Y Q, Zhou W S, Zou C. Effect of salt soil stress on sugar accumulation and sucrose-metabolizing enzymes of sweet Sorghum stem[J]. Journal of Northwest A&F University (Natural Science Edition), 2017, 45(5): 41-47+56. (in Chinese with English abstract) | |
[88] | 朱琳, 白朕卿, 王延峰, 吴佳文. 非生物胁迫对能源作物糖分产量影响的研究进展[J]. 中国农学通报, 2021, 37(10): 6-11. |
Zhu L, Bai Z Q, Wang Y F, Wu J W. The effect of abiotic stresses on sugar yield in energy crops: A review[J]. Chinese Agricultural Science Bulletin, 2021, 37(10): 6-11. (in Chinese with English abstract) | |
[89] | Aref F, Rad H E. Physiological characterization of rice under salinity stress during vegetative and reproductive stages[J]. Indian Journal of Science and Technology, 2012, 5(4): 2578-2586. |
[90] | Basuchaudhuri P. Nitrogen metabolism in rice[M]. CRC Press, 2016. |
[91] | 王军可, 王亚梁, 陈惠哲, 向镜, 张义凯, 朱德峰, 张玉屏. 灌浆初期高温影响水稻籽粒碳氮代谢的机理[J]. 中国农业气象, 2020, 41(12): 774-784. |
Wang J K, Wang Y L, Chen H Z, Xiang J, Zhang Y K, Zhu D F, Zhang Y P. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling[J]. Chinese Journal of Agrometeorology, 2020, 41(12): 774-784.. (in Chinese with English abstract) | |
[92] | Zhong C, Bai Z G, Zhu L F, Zhang J H, Zhu C Q, Huang J L, Jin Q Y, Cao X C. Nitrogen-mediated alleviation of photosynthetic inhibition under moderate water deficit stress in rice (Oryza sativa L.)[J]. Environmental and Experimental Botany, 2019, 157: 269-282. |
[93] | Rohilla P, Yadav J P. Acute salt stress differentially modulates nitrate reductase expression in contrasting salt responsive rice cultivars[J]. Protoplasma, 2019, 256(5): 1267-1278. |
[94] | Huang L L, Li M J, Zhou K, Sun T T, Hu L Y, Li C Y, Ma F W. Uptake and metabolism of ammonium and nitrate in response to drought stress in Malus prunifolia[J]. Plant Physiology and Biochemistry, 2018, 127: 185-193. |
[95] | 付景, 王亚, 杨文博, 王越涛, 李本银, 王付华, 王生轩, 白涛, 尹海庆. 干湿交替灌溉耦合施氮量对水稻籽粒灌浆生理和根系生理的影响[J]. 作物学报, 2023, 49(3): 808-820. |
Fu J, Wang Y, Yang W B, Wang Y T, Li B Y, Wang F H, Wang S X, Bai T, Yin H Q. Effects of alternate wetting and drying irrigation and nitrogen coupling on grain filling physiology and root physiology in rice[J]. Acta Agronomica Sinica, 2023, 49(3): 808-820. (in Chinese with English abstract) | |
[96] | Pinheiro C, Chaves M M. Photosynthesis and drought: can we make metabolic connections from available data?[J]. Journal of Experimental Botany, 2011, 62(3): 869-882. |
[97] | Cao L, Qin B, Gong Z, Zhang Y X. Melatonin improves nitrogen metabolism during grain filling under drought stress[J]. Physiology and Molecular Biology of Plants, 2022, 28(7): 1477-1488. |
[98] | Zhong C, Cao X, Bai Z G, Zhang J H, Zhu L F, Huang J L, Jin Q Y. Nitrogen metabolism correlates with the acclimation of photosynthesis to short-term water stress in rice (Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2018, 125: 52-62. |
[99] | Xiong Q Q, Sun C H, Li A, Zhang J, Shi Q, Zhang Y H, Hu J L, Zhou N B, Wei H Y, Liu B L. Metabolomics and biochemical analyses revealed metabolites important for the antioxidant properties of purple glutinous rice[J]. Food Chemistry, 2022, 389: 133080. |
[100] | Zhou N B, Zhang Y H, Sun T, Zhu J Y, Hu J L, Xiong Q Q. Unveiling the impact of different nitrogen fertilizer levels on rice’s eating quality through metabolite evaluation[J]. Agronomy, 2023, 13(8): 2123. |
[101] | Xiong Q Q, Sun C H, Wang R N, Wang R Z, Wang X Y, Zhang Y, Zhu J Y. The Key metabolites in rice quality formation of conventional japonica varieties[J]. Current Issues in Molecular Biology, 2023, 45(2): 990-1001. |
[102] | Zhu J Y, Li A, Sun C H, Zhang J, Hu J L, Wang S, Zhou N B, Xiong Q Q. Rice quality-related metabolites and the regulatory roles of key metabolites in metabolic pathways of high-quality semi-glutinous japonica rice varieties[J]. Foods, 2022, 11(22): 3676. |
[103] | Chang J, Cheong B E, Natera S, Roessner U. Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance[J]. Plant Physiology and Biochemistry, 2019, 144: 427-435. |
[104] | Banerjee A, Ghosh P, Roychoudhury A. Salt acclimation differentially regulates the metabolites commonly involved in stress tolerance and aroma synthesis in indica rice cultivars[J]. Plant Growth Regulation, 2019, 88: 87-97. |
[105] | Ghosh P, Roychoudhury A. Differential levels of metabolites and enzymes related to aroma formation in aromatic indica rice varieties: comparison with non-aromatic varieties[J]. 3 Biotech, 2018, 8: 1-13. |
[106] | Zhou Z L, Liu J, Meng W N, Sun Z G, Tan Y L, Liu Y, Tan M P, Wang B X, Yang J C. Integrated analysis of transcriptome and metabolome reveals molecular mechanisms of rice with different salinity tolerances[J]. Plants, 2023, 12(19): 3359. |
[107] | Chen Z K, Chen H Y, Jiang Y, Wang J P, Khan A, Li P, Cao C G. Metabolomic analysis reveals metabolites and pathways involved in grain quality traits of high-quality rice cultivars under a dry cultivation system[J]. Food Chemistry, 2020, 326: 126845. |
[108] | Li Y B, Fan C C, Xing Y Z, Yun P, Luo L J, Yan B, Peng B, Xie W B, Wang G W, Li X H. Chalk5 encodes a vacuolar H+-translocating pyrophosphatase influencing grain chalkiness in rice[J]. Nature Genetics, 2014, 46(4): 398-404. |
[109] | Wu B, Yun P, Zhou H, Xia D, Gu Y, Li P, Yao J L, Zhou Z Q, Chen J X, Liu R J. Natural variation in WHITE-CORE RATE 1 regulates redox homeostasis in rice endosperm to affect grain quality[J]. The Plant Cell, 2022, 34(5): 1912-1932. |
[110] | Zhou H, Xia D, Zhao D, Li Y H, Li P, Wu B, Gao G J, Zhang Q L, Wang G W, Xiao J H. The origin of Wxla provides new insights into the improvement of grain quality in rice[J]. Journal of Integrative Plant Biology, 2021, 63(5): 878-888. |
[111] | Zheng C K, Niu S L, Yan Y, Zhou G H, Peng Y B, He Y N, Zhou J J, Li Y P, Xie X Z. Moderate salinity stress affects rice quality by influencing expression of amylose-and protein-content-associated genes[J]. International Journal of Molecular Sciences, 2024, 25(7): 4042. |
[112] | Alam M S, Yang Z K, Li C, Yan Y, Liu Z, Nazir M M, Xu J H. Loss-of-function mutations of OsbHLH044 transcription factor lead to salinity sensitivity and a greater chalkiness in rice (Oryza sativa L.)[J]. Plant Physiology and Biochemistry, 2022, 193: 110-123. |
[113] | Tong H, Duan H, Wang S J, Su J P, Sun Y, Liu Y Q, Tang L, Liu X J, Chen W F. Moderate drought alleviates the damage to grain quality at high temperatures by improving the starch synthesis of inferior grains in japonica rice[J]. Journal of Integrative Agriculture, 2022, 21(10): 3094-3101. |
[114] | Li G, Cao R J, Ma L Y, Jiao G A, Chen P F, Dong N N, Li X W, Duan Y Q, Li X X, Zhu M D. OsLEA1b modulates starch biosynthesis at high temperatures in rice[J]. Plants, 2023, 12(23): 4070. |
[115] | Mahapatra B S, Bhupenchandra I, Devi S H, Kumar A, Chongtham S K, Singh R, Babu S, Bora S S, Devi E L, Verma G. Aerobic rice and its significant perspective for sustainable crop production[J]. Indian Journal of Agronomy, 2021, 66(4): 383-392. |
[116] | Kumar A, Sengar R S, Pathak R K, Singh A K. Integrated approaches to develop drought-tolerant rice: Demand of era for global food security[J]. Journal of Plant Growth Regulation, 2023, 42(1): 96-120. |
[117] | Jiang H, Xing X, Meng X, Chen J L, Yu K, Xu X T, Zhang R, Wei Z H, Wang D C, Cang B F. Research progress in water-saving cultivation of rice in China[J]. Crop Science, 2023, 63(5): 2623-2635. |
[118] | Haque M A, Rafii M Y, Yusoff M M, Ali N S, Yusuff O, Datta D R, Anisuzzaman M, Ikbal M F. Advanced breeding strategies and future perspectives of salinity tolerance in rice[J]. Agronomy, 2021, 11(8): 1631. |
[119] | Liu Y, Wang F M, Zhang A, Chen Z H, Luo X X, Kong D Y, Zhang F Y, Yu X Q, Liu G L, Luo L J. Improvement of salinity tolerance in water-saving and drought-resistance rice (WDR)[J]. International Journal of Molecular Sciences, 2023, 24(6): 5444. |
[120] | 张亚东, 朱镇, 陈涛, 赵庆勇, 姚姝, 周丽慧, 赵凌, 赵春芳, 梁文化, 路凯, 魏晓东, 赫磊, 王才林. 优质耐盐水稻新品种南粳盐1号的选育与特征特性[J]. 大麦与谷类科学, 2023, 40(1): 67-70. |
Zhang Y D, Zhu Z, Chen T, Zhao Q Y, Yao S, Zhou L H, Zhao L, Zhao C F, Liang W H, Lu K, Wei X D, He L, Wang C L. Breeding and characteristics of the new salt-tolerant rice variety Nangengyan No.1 with fine quality[J]. Barley and Cereal Science, 2023, 40(1): 67-70. (in Chinese with English abstract) | |
[121] | 黎佳佳, 高欢, 张剑锋, 刘毅, 余新桥, 赵洪阳. 节水抗旱稻不育系沪旱7A及所配组合特征特性分析及育种展望[J]. 中国稻米, 2024, 30(4): 89-92. |
Li J J, Gao H, Zhang J F, Liu Y, Yu X Q, Zhao H Y. Characteristics and breeding prospects of the drought-resistant rice sterile line Huian 7A and its hybrids[J]. China Rice, 2024, 30(4): 89-92. (in Chinese with English abstract) | |
[122] | Umego C, Ntui V O, Ita E E, Opara C, Uyoh E A. Screening of rice accessions for tolerance to drought and salt stress using morphological and physiological parameters[J]. American Journal of Plant Sciences, 2020, 11(12): 2080. |
[123] | Muthu V, Abbai R, Nallathambi J, Rahman H, Ramasamy S, Kambale R, Thulasinathan T, Ayyenar B, Muthurajan R. Pyramiding QTLs controlling tolerance against drought, salinity, and submergence in rice through marker assisted breeding[J]. PloS ONE, 2020, 15(1): e0227421. |
[124] | 李万宁, 刘翠翠, 王东新, 代烁楠, 张馨月, 薄涛. 生物炭-蚯蚓粪-腐殖酸联合改良土壤研究[J]. 中国资源综合利用, 2023, 41(5): 12-19+23. |
Li W N, Liu C C, Wang D X, Dai S N, Zhang X Y, Bo T. Study on soil improvement by combining biochar-earthworm manure-humic acid[J]. China Resource Comprehensive Utilization, 2023, 41(5): 12-19+23. (in Chinese with English abstract) | |
[125] | Wang Y L, Wu P N, Mei F J, Ling Y, Qiao Y B, Liu C S, Leghari S J, Guan X K, Wang T C. Does continuous straw returning keep China farmland soil organic carbon continued increase? A meta-analysis[J]. Journal of Environmental Management, 2021, 288: 112391. |
[126] | Jin Z Q, Shah T, Zhang L, Liu H Y, Peng S B, Nie L X. Effect of straw returning on soil organic carbon in rice-wheat rotation system: A review[J]. Food and Energy Security, 2020, 9(2): e200. |
[127] | Marthandan V, Geetha R, Kumutha K, Renganathan V G, Karthikeyan A, Ramalingam J. Seed priming: A feasible strategy to enhance drought tolerance in crop plants[J]. International Journal of Molecular Sciences, 2020, 21(21): 8258. |
[128] | Yan H, Mao P. Comparative time-course physiological responses and proteomic analysis of melatonin priming on promoting germination in aged oat (Avena sativa L.) seeds[J]. International Journal of Molecular Sciences, 2021, 22(2): 811. |
[129] | Rajora N, Vats S, Raturi G, Thakral V, Kaur S, Rachappanavar V, Kumar M, Kesarwani A K, Sonah H, Sharma T R, Deshmukh R. Seed priming with melatonin: A promising approach to combat abiotic stress in plants[J]. Plant Stress, 2022, 4: 100071. |
[130] | 舒志万, 韩睿, 王智博, 邢江娃, 王嵘, 朱德锐. 盐碱土壤中嗜盐微生物促进植物生长与代谢调节研究进展[J]. 江苏农业科学, 2022, 50(16): 27-36. |
Shu Z W, Han R, Wang Z B, Xing J W, Wang R, Zhu D R. Advances in the promotion of plant growth and metabolic regulation by salt-loving microorganisms in saline-alkaline soils[J]. Jiangsu Agricultural Science, 2022, 50(16): 27-36. (in Chinese with English abstract) | |
[131] | 刘星, 刘开芬, 卢林尧, 杨娅, 何艳玲, 邵桂红, 刘杰. 植物生长促进微生物对干旱胁迫条件下植物生长的影响[J]. 江苏农业学报, 2024, 40(4): 753-761. |
Liu X, Liu K F, Lu L Y, Yang Y, He Y L, Shao G H, Liu J. Effects of plant growth-promoting microorganisms on plant growth under drought stress conditions[J]. Jiangsu Journal of Agricultural Sciences, 2024, 40(4): 753-761. (in Chinese with English abstract) | |
[132] | 张蛟, 崔士友, 翟彩娇, 陈澎军, 韩继军. 盐胁迫下缓释肥和氮减量对水稻生长、产量及土壤特性的影响[J]. 江苏农业科学, 2023, 51(3): 94-100. |
Zhang J, Cui S Y, Zhai C J, Chen P J, Han J J. Effects of controlled-release fertilizer and reduced nitrogen application under salt stress on rice growth, yield, and soil properties[J]. Jiangsu Agricultural Science, 2023, 51(3): 94-100. (in Chinese with English abstract) | |
[133] | Pathak H, Kumar M, Molla K A, Pathak H, Kumar M, Molla K A, Chakraborty K. Abiotic stresses in rice production: Impacts and management[J]. ORYZA-An International Journal of Rice, 2021, 58: 103-125. |
[134] | Sadak M S, Hanafy R S, Elkady F M A M, Mogazy A M, Abdelhamid M T. Exogenous calcium reinforces photosynthetic pigment content and osmolyte, enzymatic, and non-enzymatic antioxidants abundance and alleviates salt stress in bread wheat[J]. Plants, 2023, 12(7): 1532. |
[135] | Feng D, Wang X J, Gao J P, Zhang C X, Liu H, Liu P, Sun X A. Exogenous calcium: Its mechanisms and research advances involved in plant stress tolerance[J]. Frontiers in Plant Science, 2023, 14: 1143963. |
[136] | Khan Z, Jan R, Asif S, Farooq M, Jang Y H, Kim E G, Kim N, Kim K M. Exogenous melatonin induces salt and drought stress tolerance in rice by promoting plant growth and defense system[J]. Scientific Reports, 2024, 14(1): 1214. |
[137] | Khan S, Basit A, Hafeez M B, Irshad S, Bashir S, Bashir S, Maqbool M M, Saddiq M S, Hasnain Z, Aljuaid B S, El-Shehawi A M, Li Y. Moringa leaf extract improves biochemical attributes, yield and grain quality of rice (Oryza sativa L.) under drought stress[J]. PloS ONE, 2021, 16(7): e0254452. |
[138] | Hossain A, Sabagh A E, Bhatt R, Farooq M, Hasanuzzaman M. Consequences of salt and drought stresses in rice and their mitigation strategies through intrinsic biochemical adaptation and applying stress regulators[M]. Sustainable Soil and Land Management and Climate Change CRC Press, 2021, 1: 15. |
[139] | Fan X L, Zhao J, Sun X S, Zhu Y, Li Q F, Zhang L, Zhao D S, Huang L C, Zhang C Q, Liu Q Q. Exogenous melatonin improves the quality performance of rice under high temperature during grain filling[J]. Agronomy, 2022, 12(4): 949. |
[140] | Mu D W, Feng N J, Zheng D F, Zhou H, Liu L, Chen G J, Mu B M. Physiological mechanism of exogenous brassinolide alleviating salt stress injury in rice seedlings[J]. Scientific Reports, 2022, 12(1): 20439. |
[1] | WU Jinshui, TANG Jiangying, TAN Li, GUO Zhiqiang, YANG Juan, ZHANG Xinzhen, CHEN Guifang, WANG Jianlong, SHI Wanju. Mechanisms of Arsenic Uptake and Transport in Rice and Agronomic Mitigation Strategies [J]. Chinese Journal OF Rice Science, 2025, 39(2): 143-155. |
[2] | ZHANG Laitong, YANG Le, LIU Hong, ZHAO Xueming, CHENG Tao, XU Zhenjiang. Research Advances of Fragrance Substances in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(2): 171-186. |
[3] | FENG Tao, ZHANG Zhaoyang, HUANG Xinni, WANG Yue, ZHONG Xuzhi, FENG Zhiming, LIU Xin, ZUO Shimin, OUYANG Shouqiang. Osa-miR166i-3 Positively Regulates Resistance to Sheath Blight Through Mediating the Accumulation of Reactive Oxygen Species [J]. Chinese Journal OF Rice Science, 2025, 39(2): 187-196. |
[4] | GONG Mengmeng, SONG Shufeng, QIU Mudan, DONG Hao, ZHANG Longhui, LI Lei, LI Bin, CHEN Weijun, LI Yixing, WANG Tiankang, LEI Dongyang, LI Li. Functional Characterization of Rice Leaf Color Gene OsClpP6 [J]. Chinese Journal OF Rice Science, 2025, 39(2): 197-208. |
[5] | YAN Ying, WANG Kai, ZHANG Lixia, HU Zejun, YE Junhua, YANG Hang, GU Chunjun, WU Shujun. Development of a New High-Quality and Multi-Resistant japonica Rice Variety, Huxianggeng 216, Through Molecular Pyramiding Breeding [J]. Chinese Journal OF Rice Science, 2025, 39(2): 209-219. |
[6] | XU Yuemei, PENG Shiyan, SUN Zhiwei, WANG Zhiqin, ZHU Kuanyu, YANG Jianchang. Differences in Endogenous Hormone Levels and Their Relationship with Yield and Phosphorus Use Efficiency in Rice Varieties With Various Tolerance to Low Phosphorus Stress [J]. Chinese Journal OF Rice Science, 2025, 39(2): 231-244. |
[7] | TANG Chenghan, WANG Jingqing, CHEN Huizhe, ZHANG Yuping, XIANG Jing, ZHANG Yikai, WANG Zhigang, HUAI Yan, CHEN Jiafeng, WANG Yaliang. Effects of Hybrid Rice Seedling Quality in Drill-seeding Nursery on Grain Yield in Mechanical Transplanting [J]. Chinese Journal OF Rice Science, 2025, 39(2): 245-254. |
[8] | SHU Ao, XIE Jiaxin, CAO Wei, ZHOU Chuanming, LI Beilei, CHEN Jiaxin, LI Li, CAO Fangbo, CHEN Jiana, HUANG Min. Effect of Nitrogen Management Strategies on Yield and Grain Quality of High-quality Hybrid Mid-season Rice [J]. Chinese Journal OF Rice Science, 2025, 39(2): 255-263. |
[9] | SHAO Yafang, ZHU Dawei, ZHENG Xin, MOU Renxiang, ZHANG Linping, CHEN Mingxue. Development Status and Regional Differences of japonica Rice Quality in the Yangtze River Delta Region from 2002 to 2022 [J]. Chinese Journal OF Rice Science, 2025, 39(2): 264-276. |
[10] | SUI Jingjing, ZHAO Guilong, JIN Xin, BU Qingyun, TANG Jiaqi. Advances in Molecular and Physiological Mechanisms of Cold Tolerance Regulation of Rice at the Booting Stage [J]. Chinese Journal OF Rice Science, 2025, 39(1): 1-10. |
[11] | REN Ningning, SUN Yongjian, SHEN Congcong, ZHU Shuangbing, LI Huiju, ZHANG Zhiyuan, CHEN Kai. Research Progress in Rice Mesocotyl [J]. Chinese Journal OF Rice Science, 2025, 39(1): 11-23. |
[12] | XIAO Wuwei, ZHU Chenguang, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui. Research Progress in Rice Quality of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 33-46. |
[13] | CHEN Zhihui, TAO Yajun, FAN Fangjun, XU Yang, WANG Fangquan, LI Wenqi, GULINAER·Bahetibieke , JIANG Yanjie, ZHU Jianping, LI Xia, YANG Jie. Development and Application of a Functional Marker for Heading Date Gene Hd6 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 47-54. |
[14] | HU Fengyue, WANG Jian, WANG Chun, WANG Kejian, LIU Chaolei. Generation of Rice DMP1, DMP2 and DMP3 Mutants and Identification of Their Haploid Induction Ability [J]. Chinese Journal OF Rice Science, 2025, 39(1): 55-66. |
[15] | YANG Chuanming, WANG Lizhi, ZHANG Xijuan, YANG Xianli, WANG Yangyang, HOU Benfu, CUI Shize, LI Qingchao, LIU Kai, MA Rui, FENG Yanjiang, LAI Yongcai, LI Hongyu, JIANG Shukun. Analysis of QTL Controlling Cold Tolerance at Seedling Stage by Using a High-Density SNP Linkage Map in japonica Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 82-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||