Chinese Journal OF Rice Science ›› 2020, Vol. 34 ›› Issue (5): 470-478.DOI: 10.16819/j.1001-7216.2020.9109
• Research Papers • Previous Articles
Huajun ZHU1,2,3, Hu ZHOU1,2,3, Zuohua REN1,2, Erming LIU1,2,3,*()
Received:
2019-10-12
Revised:
2019-12-23
Online:
2020-09-10
Published:
2020-09-10
Contact:
Erming LIU
朱华珺1,2,3, 周瑚1,2,3, 任佐华1,2, 刘二明1,2,3,*()
通讯作者:
刘二明
基金资助:
CLC Number:
Huajun ZHU, Hu ZHOU, Zuohua REN, Erming LIU. Extracellular Antimicrobial Substances Produced by Bacillus subtilis JN005 and Its Control Efficacy on Rice Leaf Blast[J]. Chinese Journal OF Rice Science, 2020, 34(5): 470-478.
朱华珺, 周瑚, 任佐华, 刘二明. 枯草芽孢杆菌JN005胞外抗菌物质及对水稻叶瘟防治效果[J]. 中国水稻科学, 2020, 34(5): 470-478.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2020.9109
Fig. 4. Effect of extracellular antimicrobial substances of JN005 strain on mycelia of M. oryzae. A, Treated with sterile water; B, Treated with PBS buffer; C-F, Treated with crude extract of extracellular antimicrobial substances.
处理 Treatment | 稀释倍数 Dilution ratio | 试验组A Test group A | 试验组B Test group B |
---|---|---|---|
发病率 Disease incidence/% | 发病率 Disease incidence/% | ||
清水 Water | 0 | 98.5±0.7 a | 97.8±1.3 a |
PBS缓冲液 PBS buffer | 0 | 97.0±2.0 a | 99.3±0.7 a |
40%稻瘟灵乳油 40% isoprothiolane (EC) | 500 | 30.4±3.0 b | 29.6±2.7 c |
75%三环唑可湿性粉剂 75% tricyclazole (WP) | 1500 | 20.0±1.3 c | 23.0±1.5 d |
胞外抗菌物质粗提液 Extracellular antimicrobial substances crude extract | 100 | 34.1±3.2 b | 38.5±2.7 b |
Table 1 Control efficacy of crude extracts of JN005 extracellular antimicrobial substances on leaf blast (indoor detached-leaf inoculation).
处理 Treatment | 稀释倍数 Dilution ratio | 试验组A Test group A | 试验组B Test group B |
---|---|---|---|
发病率 Disease incidence/% | 发病率 Disease incidence/% | ||
清水 Water | 0 | 98.5±0.7 a | 97.8±1.3 a |
PBS缓冲液 PBS buffer | 0 | 97.0±2.0 a | 99.3±0.7 a |
40%稻瘟灵乳油 40% isoprothiolane (EC) | 500 | 30.4±3.0 b | 29.6±2.7 c |
75%三环唑可湿性粉剂 75% tricyclazole (WP) | 1500 | 20.0±1.3 c | 23.0±1.5 d |
胞外抗菌物质粗提液 Extracellular antimicrobial substances crude extract | 100 | 34.1±3.2 b | 38.5±2.7 b |
Fig. 5. Effect of extracellular antimicrobial substances of JN005 strain on conidia of M. oryzae. A, Treated with sterile water; B, Treated with PBS buffer; C-F, Treated with crude extract of extracellular antimicrobial substances.
Fig. 6. Control efficacy of extracellular antimicrobial substances on rice leaf blast(indoor detached-leaf inoculation). A, Water treatment; B, Extracellular antimicrobial substances treatment.
处理 Treatment | 稀释倍数 Dilution ratio | 试验组C Test group C | 试验组D Test group D | ||||
---|---|---|---|---|---|---|---|
发病率 Disease incidence/% | 病情指数 Disease index | 防治效果 Control efficicy/% | 发病率 Disease incidence/% | 病情指数 Disease index | 防治效果 Control efficicy/% | ||
清水 Water | 0 | 97.8±1.1 a | 82.1±0.9 a | / | 96.7±1.9 a | 80.3±0.9 a | / |
PBS缓冲液 PBS buffer | 0 | 94.4±1.1 a | 80.3±0.7 a | 2.2±0.9 d | 95.6±2.9 a | 79.3±0.6 a | 1.2±0.5 c |
40%稻瘟灵乳油 | 500 | 35.6±2.9 b | 15.1±0.4 c | 81.7±0.5 b | 37.8±2.9 b | 13.7±0.7 c | 83.0±0.9 a |
40% isoprothiolane (EC) | |||||||
75%三环唑可湿性粉剂 | 1500 | 25.6±2.9 c | 11.3±0.7 d | 86.3±0.7 a | 27.8±1.1 c | 12.5±0.8 c | 84.4±1.1 a |
75% tricyclazole (WP) | |||||||
胞外抗菌物质粗提液 | 100 | 40.0±3.3 b | 20.3±1.6 b | 75.3±1.8 c | 43.3±3.9 b | 22.9±0.9 b | 71.5±1.1 b |
Crude extracts of extracellular antimicrobial substances |
Table 2 Control efficacy of crude extracts of JN005 extracellular antimicrobial substances on leaf blast(indoor live inoculation).
处理 Treatment | 稀释倍数 Dilution ratio | 试验组C Test group C | 试验组D Test group D | ||||
---|---|---|---|---|---|---|---|
发病率 Disease incidence/% | 病情指数 Disease index | 防治效果 Control efficicy/% | 发病率 Disease incidence/% | 病情指数 Disease index | 防治效果 Control efficicy/% | ||
清水 Water | 0 | 97.8±1.1 a | 82.1±0.9 a | / | 96.7±1.9 a | 80.3±0.9 a | / |
PBS缓冲液 PBS buffer | 0 | 94.4±1.1 a | 80.3±0.7 a | 2.2±0.9 d | 95.6±2.9 a | 79.3±0.6 a | 1.2±0.5 c |
40%稻瘟灵乳油 | 500 | 35.6±2.9 b | 15.1±0.4 c | 81.7±0.5 b | 37.8±2.9 b | 13.7±0.7 c | 83.0±0.9 a |
40% isoprothiolane (EC) | |||||||
75%三环唑可湿性粉剂 | 1500 | 25.6±2.9 c | 11.3±0.7 d | 86.3±0.7 a | 27.8±1.1 c | 12.5±0.8 c | 84.4±1.1 a |
75% tricyclazole (WP) | |||||||
胞外抗菌物质粗提液 | 100 | 40.0±3.3 b | 20.3±1.6 b | 75.3±1.8 c | 43.3±3.9 b | 22.9±0.9 b | 71.5±1.1 b |
Crude extracts of extracellular antimicrobial substances |
Fig. 7. Control efficacy of extracellular antimicrobial substances on leaf blast(indoor live inoculation). A, Water treatment; B, Extracellular antimicrobial substances treatment.
[1] | Guo F F, Chen X L, Lu M H, Yang L, Wang S W, Wu B M.Spatial analysis of rice blast in China at three different scales[J]. Phytopathology, 2018, 108(11): 1276-1286. |
[2] | Wightwick A, Walters R, Allinson G, Reichman S, Menzies N.Environmental risks of fungicides used in horticultural production systems[J]. Fungicides, 2010: 273-304. |
[3] | Leadbeater A J.Plant health management: Fungicides and antibiotics. Encyclopedia of Agriculture and Food Systems[J]. 2014: 408-424. |
[4] | Hollomon D W.Fungicide resistance: Facing the challenge: A review[J]. Plant Protection Science, 2015, 51(4): 170-176. |
[5] | Barratt B I P, Moran V C, Bigler F, van Lenteren J C. The status of biological control and recommendations for improving uptake for the future[J]. BioControl, 2018, 63(1): 155-167. |
[6] | Hajek A E, Eilenberg J. Natural enemies: An introduction to biological control[M]. Cambridge University Press, 2018. |
[7] | Velivelli S L, De Vos P, Kromann P, Declerck S, Prestwich B D.Biological control agents: From field to market, problems, and challenges[J]. Trends in Biotechnology, 2014, 32(10): 493-496. |
[8] | Wang X Q, Zhao D L, Shen L L, Jing C L, Zhang C S.Application and mechanisms of Bacillus subtilis in biological control of plant disease[M]//Role of rhizospheric microbes in soil. Singapore: Springer, 2018: 225-250. |
[9] | 沙月霞. 防治稻瘟病芽胞杆菌的筛选及生防机制研究[D]. 北京: 中国农业大学, 2016. |
Sha Y X.Screening of Bacillus strains against rice blast and research of biocontrol mechanism[D]. Beijing: China Agricultural University, 2016. | |
[10] | Zhang L, Sun C.Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe oryzae by inducing reactive oxygen species production and chromatin condensation[J]. Applied and Environmental Microbiology, 2018, 84(18): 1-46. |
[11] | Sowanpreecha R, Kanchanabanca C, Sangvanich P, Rerngsamran P.Bacillus subtilis N3 as a biocontrol agent for Curvularia lunata and its antifungal protein properties[J]. International Journal of Agriculture and Biology, 2018, 20(3): 531-538. |
[12] | Rishad K S, Rebello S, Shabanamol P S, Jisha M S.Biocontrol potential of halotolerant bacterial chitinase from high yielding novel Bacillus pumilus MCB-7 autochthonous to mangrove ecosystem[J]. Pesticide Biochemistry and Physiology, 2017, 137: 36-41. |
[13] | 中国农药信息网. 农药登记数据[DB/OL]. , 2019-09-10. |
China pesticide information network. Pesticide registration data[DB/OL]. , 2019-09-10. | |
[14] | 刘二明, 任佐华, 管玲莉, 刘敏捷, 周鑫钰. 枯草芽孢杆菌JN005及其在防治水稻稻瘟病中的应用. 中国: 201510426569.9[P].2015-10-14. |
Liu E M, Ren Z H, Guan L L, Liu M J, Zhou X Y. Bacillus subtilis JN005 and its application in rice blast control. China: 201510426569.9[P].2015-10-14. | |
[15] | 管玲莉. 水稻稻瘟病生防菌的筛选及其防治效果[D]. 长沙:湖南农业大学, 2016. |
Guan L L.Screening of biocontrol bacteria and their performance against rice blast[D]. Changsha: Hunan Agricultural University, 2016. | |
[16] | 周瑚. 湖南稻瘟病菌遗传多样性分析及水稻品种抗瘟基因型推定[D]. 长沙:湖南农业大学, 2017. |
Zhou H.Genetic diversity analysis of Magnaporthe oryzae and presumption of resistance blast genotypes of rice cultivars in Hunan[D]. Changsha: Hunan Agricultural University, 2017. | |
[17] | 中华人民共和国农业农村部. 水稻稻瘟病抗性室内离体叶片鉴定技术规程: NY/T 3257—2018[S]. 北京: 中国农业出版社, 2018: 2-4. |
Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Technical code of practice for wounding inoculation of detached leaves for evaluation of rice resistance to the blast fungus (Magnaporthe oryzae): NY/T 3257-2018[S]. Beijing: China Agricultural Press, 2018: 2-4. | |
[18] | Jacobsen B J, Zidack N K, Larson B J.The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases[J]. Phytopathology, 2004, 94(11): 1272-1275. |
[19] | Yan L, Jing T, Yujun Y, Bin L I, Hui L I, Chun L I.Biocontrol efficiency of Bacillus subtilis SL-13 and characterization of an antifungal chitinase[J]. Chinese Journal of Chemical Engineering, 2011, 19(1): 128-134. |
[20] | Mnif I, Grau-Campistany A, Coronel-León J, Hammami I, Triki M A, Manresa A, Ghribi D.Purification and identification of Bacillus subtilis SPB1 lipopeptide biosurfactant exhibiting antifungal activity against Rhizoctonia bataticola and R. solani[J]. Environmental Science and Pollution Research, 2016, 23(7): 6690-6699. |
[21] | Yaseen Y, Diop A, Gancel F, Béchet M, Jacques P, Drider D.Polynucleotide phosphorylase is involved in the control of lipopeptide fengycin production in Bacillus subtilis[J]. Archives of Microbiology, 2018: 1-9. |
[22] | Cruz-Martín M, Mena E, Acosta-Suárez M, Pichardo T, Rodriguez E, Alvarado-Capó Y.Protein compounds of Bacillus subtilis with in vitro antifungal activity against Pseudocercospora fijiensis (Morelet)[J]. Brazilian Journal of Microbiology, 2019: 1-5. |
[23] | Wang N N, Yan X, Gao X N, Niu H J, Kang Z S, Huang L L.Purification and characterization of a potential antifungal protein from Bacillus subtilis E1R-J against Valsa mali[J]. World Journal of Microbiology and Biotechnology, 2016, 32(4): 63. |
[24] | 郑小亮, 董超, 牛瑞艳, 齐新月, 孙超, 王星星, 刘超, 贾桂燕, 陈志宝. 枯草芽孢杆菌 Zl-2 抗菌蛋白特性及对小麦赤霉病菌的抑制作用[J]. 黑龙江大学自然科学学报, 2018, 35(2): 206-211. |
Zheng X L, Dong C, Niu R Y, Qi X Y, Sun C, Wang X X, Liu C, Jia G Y, Chen Z B.Characterization and inhibition effects of antifungal protein from Bacillus subtilis Zl-2[J]. Journal of Natural Science of Heilongjiang University, 2018, 35(2): 206-211. | |
[25] | 黄华毅, 黄咏槐, 黄焕华, 梁英梅, 田呈明. 枯草芽孢杆菌 STO-12 脂肽类物质抑菌活性及其特性分析[J]. 广东林业科技, 2018 (4): 8-14. |
Huang H Y, Huang Y H, Huang H H, Liang Y M, Tian C M.Antifungal activities and characterization of lipopeptides produced by Bacillus subtilis STO-12[J]. Forestry and Environmental Science, 2018 (4): 8-14. | |
[26] | 张晓云. 枯草芽孢杆菌菌株 CAB-1 抑菌物质的分离鉴定及活性分析[D]. 石家庄河北农业大学, 2011. |
Zhang X Y.Isolation and analysis of antifungal compounds produced by Bacillus subtilis CAB-1[D]. Shijiazhuang: Agricultural University of Hebei, 2011. | |
[27] | Yan L, Jing T, Yujun Y, Bin L I, Hui L I, Chun L I.Biocontrol efficiency of Bacillus subtilis SL-13 and characterization of an antifungal chitinase[J]. Chinese Journal of Chemical Engineering, 2011, 19(1): 128-134. |
[28] | 吴艳清, 王游游, 王畅, 沙梦莹. 枯草芽孢杆菌 WL2 脂肽粗提物对致病疫霉的抑制作用及其分离鉴定[J]. 河北大学学报: 自然科学版, 2018, 38(6): 632-639. |
Wu Y Q, Wang Y Y, Wang C, Sha M Y.Inhibitory effect of lipopeptide crude extract produced by Bacillus subtilis WL2 on Phytophthora infestans and its isolation and identification[J]. Journal of Hebei University: Natural Science Edition, 2018, 38(6): 632-639. | |
[29] | 黄娜. 枯草芽孢杆菌粗蛋白的提取纯化及抑菌作用[D]. 合肥: 安徽农业大学, 2015. |
Huang N.Extraction and purification of crude protein from Bacillus subtilis against pathogenic fungus[D]. Hefei: Anhui Agricultural University, 2015. | |
[30] | Yamaguchi I.Overview on the chemical control of rice blast disease[M]//Rice Blast: Interaction with Rice and Control. Dordrecht: Springer, 2004: 1-13. |
[31] | Cawoy H, Bettiol W, Fickers P, Ongena M.Bacillus -based biological control of plant diseases[M] //Margarita S. Pesticides in the Modern World-pesticides Use and Management. Rieka, Croatia: InTech, 2011. |
[1] | XU Danjie, LIN Qiaoxia, LI Zhengkang, ZHUANG Xiaoqian, LING Yu, LAI Meiling, CHEN Xiaoting, LU Guodong. OsOPR10 Positively Regulates Rice Blast and Bacterial Blight Resistance [J]. Chinese Journal OF Rice Science, 2024, 38(4): 364-374. |
[2] | CHEN Mingliang, XIONG Wentao, SHEN Yumin, XIONG Huanjin, LUO Shiyou, WU Xiaoyan, HU Lanxiang, XIAO Yeqing. Genetic Dissection of Broad Spectrum Resistance of the Rice Maintainer Ganxiang B [J]. Chinese Journal OF Rice Science, 2023, 37(5): 470-477. |
[3] | LI Gang, GAO Qingsong, LI Wei, ZHANG Wenxia, WANG Jian, CHEN Baoshan, WANG Di, GAO Hao, XU Weijun, CHEN Hongqi, JI Jianhui. Directed Knockout of SD1 Gene Improves Lodging Resistance and Blast Resistance of Rice [J]. Chinese Journal OF Rice Science, 2023, 37(4): 359-367. |
[4] | ZHOU Yonglin, SHEN Xiaolei, ZHOU Lishuai, LIN Qiaoxia, WANG Zhaolu, CHEN Jing, FENG Huijie, ZHANG Zhenwen, CHEN Xiaoting, LU Guodong. OsLOX10 Positively Regulates Defense Responses of Rice to Rice Blast and Bacterial Blight [J]. Chinese Journal OF Rice Science, 2022, 36(4): 348-356. |
[5] | Yudong CAO, Xiangyi XIAO, Naizhong YE, Xiaowen DING, Xiaoxuan YI, Jinling LIU, Yinghui XIAO. Auxin Regulator OsGRF4 Simultaneously Regulates Rice Grain Shape and Blast Resistance [J]. Chinese Journal OF Rice Science, 2021, 35(6): 629-638. |
[6] | Zhaomeng XU, Lihua LI, Xiaoqing GAO, Zhengjie YUAN, Xin LI, Xudan TIAN, Lanlan WANG, Shaohong QU. Comparative Transcriptome Analysis of Transgenic Rice Line Carrying the Rice Blast Resistance Gene Pi9 [J]. Chinese Journal OF Rice Science, 2020, 34(3): 245-255. |
[7] | Jinlu LI, Hui ZHANG, Zeyu JIAO, Jianyu LIU, Guangyu HAN, Xiaoxuan ZHUO, Qiong LUO. Identification of Blast Disease Resistance-related Genes by Genomic Sequence Comparison of Rice Variety Ziyu 44 and Jiangnanxiangnuo [J]. Chinese Journal OF Rice Science, 2020, 34(1): 8-16. |
[8] | Tao CHEN, Xuchao SUN, Shanlei ZHANG, Wenhua LIANG, Lihui ZHOU, Qingyong ZHAO, Shu YAO, Ling ZHAO, Chunfang ZHAO, Zhen ZHU, Yadong ZHANG, Cailin WANG. Development and Verification of Specific Molecular Markers for Pigm Gene Associated with Broad-spectrum Resistance to Rice Blast [J]. Chinese Journal OF Rice Science, 2020, 34(1): 28-36. |
[9] | Ni CAO, Yuan CHEN, Zhijuan JI, Yuxiang ZENG, Changdeng YANG, Yan LIANG. Recent Progress in Molecular Mechanism of Rice Blast Resistance [J]. Chinese Journal OF Rice Science, 2019, 33(6): 489-498. |
[10] | Yan LIU, Baoxiang WANG, Bo YANG, Tingmu CHEN, Yungao XING, Zhiguang SUN, Bo XU, Ming CHI, Baiguan LU, Jian LI, Jinbo LIU, Zhaowei FANG, Derong QIN, Dayong XU. Genetic Analysis of Rice Neck Blast Resistance in Huang-Huai-Hai Region [J]. Chinese Journal OF Rice Science, 2019, 33(4): 377-382. |
[11] | Zhengyan PAN, Fulin QIU, Guilan LÜ, Xiufang MA, Wenqi SHANG, Yuanjun BAI, Zhengjin XU. Analysis of Rice Blast Resistance Genes in japonica Rice Varieties in Liaoning Province [J]. Chinese Journal OF Rice Science, 2019, 33(3): 241-248. |
[12] | Zhongna HAO, Xueqin MAO, Rongyao CHAI, Yanli WANG, Guochang SUN. Analysis of Resistance to Rice Blast in indica Rice Varieties from Rice Regional Trials in the Middle and Lower Reaches of the Yangtze River in China [J]. Chinese Journal OF Rice Science, 2019, 33(2): 152-157. |
[13] | Xiaoxuan ZHUO, Linlin FAN, Xingyu AN, Jingwei GUO, Rui YANG, Qianchun ZENG, Qiong LUO. Mapping of a New Rice Blast Resistance Gene in Ziyu 44, a Rice Landrace from Yunnan Province, China [J]. Chinese Journal OF Rice Science, 2019, 33(1): 12-19. |
[14] | Yufei DENG, Minghao LIU, Dan WANG, Shimin ZUO, Houxiang KANG, Guoliang WANG. Origin, Distribution and Sequence Diversity of Rice Blast Resistance Locus LABR_64 in Rice [J]. Chinese Journal OF Rice Science, 2019, 33(1): 20-27. |
[15] | Tingting XU, Ning YU, Yingxin ZHANG, Zhenzhen BI, Weixun WU, Yongrun CAO, Beifang WANG, Yue ZHANG, Dandan XUAN, Daibo CHEN, Xiaodeng ZHAN, Shihua CHENG, Liyong CAO. Identification of Rice Blast Resistance Mutant lmm326 and Preliminary Analysis of Its Regulatory Pathway [J]. Chinese Journal OF Rice Science, 2017, 31(4): 335-344. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||