Chinese Journal OF Rice Science ›› 2017, Vol. 31 ›› Issue (5): 524-532.DOI: 10.16819/j.1001-7216.2017.7022
• Orginal Article • Previous Articles Next Articles
Ning ZHOU1,2, Liquan JING1, Yunxia WANG3, Jianguo ZHU4, Lianxin YANG1,*(), Yulong WANG1,*(
)
Received:
2017-02-14
Revised:
2017-04-13
Online:
2017-10-10
Published:
2017-09-10
Contact:
Lianxin YANG, Yulong WANG
周宁1,2, 景立权1, 王云霞3, 朱建国4, 杨连新1,*(), 王余龙1,*(
)
通讯作者:
杨连新,王余龙
基金资助:
CLC Number:
Ning ZHOU, Liquan JING, Yunxia WANG, Jianguo ZHU, Lianxin YANG, Yulong WANG. Effects of Elevated Atmospheric CO2 and Temperature on Dynamics of Leaf Chlorophyll Contents and SPAD Value of Rice in Open-Air Field Conditions[J]. Chinese Journal OF Rice Science, 2017, 31(5): 524-532.
周宁, 景立权, 王云霞, 朱建国, 杨连新, 王余龙. 开放式空气中CO2浓度和温度增高对水稻叶片叶绿素含量和SPAD值的动态影响[J]. 中国水稻科学, 2017, 31(5): 524-532.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2017.7022
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
CO2 | 1 | 0.002 | 0.002 | 7.206 | 0.011 |
温度Temperature(T) | 1 | 0.004 | 0.004 | 13.476 | 0.001 |
时期Stage(S) | 4 | 0.751 | 0.188 | 708.332 | <0.001 |
CO2×T | 1 | 0.000 | 0.000 | 0.121 | 0.730 |
CO2×S | 4 | 0.009 | 0.002 | 8.259 | <0.001 |
T×S | 4 | 0.003 | 0.001 | 3.253 | 0.021 |
CO2×T×S | 4 | 0.000 | 0.000 | 0.289 | 0.884 |
Table 1 Analysis of variance for chlorophyll a content of the first fully expanded leaf from the top of the rice plants.
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
CO2 | 1 | 0.002 | 0.002 | 7.206 | 0.011 |
温度Temperature(T) | 1 | 0.004 | 0.004 | 13.476 | 0.001 |
时期Stage(S) | 4 | 0.751 | 0.188 | 708.332 | <0.001 |
CO2×T | 1 | 0.000 | 0.000 | 0.121 | 0.730 |
CO2×S | 4 | 0.009 | 0.002 | 8.259 | <0.001 |
T×S | 4 | 0.003 | 0.001 | 3.253 | 0.021 |
CO2×T×S | 4 | 0.000 | 0.000 | 0.289 | 0.884 |
Fig. 3. Effect of elevated atmospheric CO2 concentration and high temperature on chlorophyll a+b content in leaves at different growth stages of rice.
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
CO2 | 1 | 0.000 | 0.000 | 1.283 | 0.264 |
温度Temperature(T) | 1 | 0.001 | 0.001 | 4.532 | 0.039 |
时期Stage(S) | 4 | 0.075 | 0.019 | 70.455 | <0.001 |
CO2×T | 1 | 0.000 | 0.000 | 0.164 | 0.687 |
CO2×S | 4 | 0.015 | 0.004 | 14.182 | <0.001 |
T×S | 4 | 0.001 | 0.000 | 0.509 | 0.730 |
CO2×T×S | 4 | 0.000 | 0.000 | 0.177 | 0.949 |
Table 2 Analysis of variance for chlorophyll b content of the first fully expanded leaf from the top of the rice plants.
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value |
---|---|---|---|---|---|
CO2 | 1 | 0.000 | 0.000 | 1.283 | 0.264 |
温度Temperature(T) | 1 | 0.001 | 0.001 | 4.532 | 0.039 |
时期Stage(S) | 4 | 0.075 | 0.019 | 70.455 | <0.001 |
CO2×T | 1 | 0.000 | 0.000 | 0.164 | 0.687 |
CO2×S | 4 | 0.015 | 0.004 | 14.182 | <0.001 |
T×S | 4 | 0.001 | 0.000 | 0.509 | 0.730 |
CO2×T×S | 4 | 0.000 | 0.000 | 0.177 | 0.949 |
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value | |
---|---|---|---|---|---|---|
CO2 | 1 | 0.004 | 0.004 | 6.636 | 0.014 | |
温度Temperature(T) | 1 | 0.009 | 0.009 | 15.316 | <0.001 | |
时期Stage(S) | 4 | 1.295 | 0.324 | 556.529 | <0.001 | |
CO2×T | 1 | 0.000 | 0.000 | 0.002 | 0.969 | |
CO2×S | 4 | 0.045 | 0.011 | 19.309 | <0.001 | |
T×S | 4 | 0.005 | 0.001 | 2.273 | 0.078 | |
CO2×T×S | 4 | 0.001 | 0.000 | 0.397 | 0.810 |
Table 3 Analysis of variance for chlorophyll a+b content of the first fully expanded leaf from the top of the rice plants.
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value | |
---|---|---|---|---|---|---|
CO2 | 1 | 0.004 | 0.004 | 6.636 | 0.014 | |
温度Temperature(T) | 1 | 0.009 | 0.009 | 15.316 | <0.001 | |
时期Stage(S) | 4 | 1.295 | 0.324 | 556.529 | <0.001 | |
CO2×T | 1 | 0.000 | 0.000 | 0.002 | 0.969 | |
CO2×S | 4 | 0.045 | 0.011 | 19.309 | <0.001 | |
T×S | 4 | 0.005 | 0.001 | 2.273 | 0.078 | |
CO2×T×S | 4 | 0.001 | 0.000 | 0.397 | 0.810 |
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value | |
---|---|---|---|---|---|---|
CO2 | 1 | 0.001 | 0.001 | 0.182 | 0.672 | |
温度Temperature(T) | 1 | 0.008 | 0.008 | 1.240 | 0.272 | |
时期Stage(S) | 4 | 65.618 | 16.404 | 2617.749 | <0.001 | |
CO2×T | 1 | 0.001 | 0.001 | 0.221 | 0.641 | |
CO2×S | 4 | 0.224 | 0.056 | 8.933 | <0.001 | |
T×S | 4 | 0.010 | 0.002 | 0.396 | 0.810 | |
CO2×T×S | 4 | 0.003 | 0.001 | 0.112 | 0.978 |
Table 4 Analysis of variance for chlorophyll a/b of the first fully expanded leaf from the top of the rice plants.
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value | |
---|---|---|---|---|---|---|
CO2 | 1 | 0.001 | 0.001 | 0.182 | 0.672 | |
温度Temperature(T) | 1 | 0.008 | 0.008 | 1.240 | 0.272 | |
时期Stage(S) | 4 | 65.618 | 16.404 | 2617.749 | <0.001 | |
CO2×T | 1 | 0.001 | 0.001 | 0.221 | 0.641 | |
CO2×S | 4 | 0.224 | 0.056 | 8.933 | <0.001 | |
T×S | 4 | 0.010 | 0.002 | 0.396 | 0.810 | |
CO2×T×S | 4 | 0.003 | 0.001 | 0.112 | 0.978 |
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value | |
---|---|---|---|---|---|---|
CO2 | 1 | 29.334 | 29.334 | 5.511 | 0.020 | |
温度Temperature(T) | 1 | 44.645 | 44.645 | 8.387 | 0.004 | |
时期Stage(S) | 5 | 24603.975 | 4920.795 | 924.447 | <0.001 | |
CO2×T | 1 | 3.375 | 3.375 | 0.634 | 0.427 | |
CO2×S | 5 | 171.373 | 34.275 | 6.439 | <0.001 | |
T×S | 5 | 99.644 | 19.929 | 3.744 | 0.003 | |
CO2×T×S | 5 | 21.667 | 4.333 | 0.814 | 0.541 |
Table 5 Analysis of variance for leaf SPAD values of the first fully expanded leaf from the top of the rice plants.
指标 Index | 自由度 d f | 总均方 Total mean square | 均方 Mean square | F值 F value | P值 P value | |
---|---|---|---|---|---|---|
CO2 | 1 | 29.334 | 29.334 | 5.511 | 0.020 | |
温度Temperature(T) | 1 | 44.645 | 44.645 | 8.387 | 0.004 | |
时期Stage(S) | 5 | 24603.975 | 4920.795 | 924.447 | <0.001 | |
CO2×T | 1 | 3.375 | 3.375 | 0.634 | 0.427 | |
CO2×S | 5 | 171.373 | 34.275 | 6.439 | <0.001 | |
T×S | 5 | 99.644 | 19.929 | 3.744 | 0.003 | |
CO2×T×S | 5 | 21.667 | 4.333 | 0.814 | 0.541 |
[1] | NOAA. Trends in atmospheric carbon dioxide. [2014-12-30].. |
[2] | 刘贞琦. 不同株型水稻光合特性的研究. 中国农业科学, 1980, 13(3): 6-10. |
Liu Z Q.A study on the photosynthetic characters of different plant types of rice.Sci Agric Sin, 1980, 13(3):6-10. (in Chinese with English abstract) | |
[3] | 张桂莲, 陈立云, 张顺堂, 张国华, 唐文邦, 贺治洲, 王明. 抽穗开花期高温对水稻剑叶理化特性的影响. 中国农业科学, 2007, 40(7): 1345-1352. |
Zhang G L, Chen L Y, Zhang S T, Tang W B, He Z Z, Wang M.Effects of high temperature on physiological and biochemical characteristics in flag leaf of rice during heading and flowering period.Sci Agric Sin, 2007, 40(7): 1345-1352. (in Chinese with English abstract) | |
[4] | 杨永辉, 吴普特, 武继承, 赵世伟, 黄占斌, 何方. 冬小麦光合特征及叶绿素含量对保水剂和氮肥的响应. 应用生态学学报, 2011, 22(1): 79-85. |
Yang Y H, Wu P T, Wu J C, Zhao S W, Huang Z B, He F.Esponses of winter wheat photosynthetic characteristics and chlorophyll content to water-retaining agent and N fertilizer.Chin J Appl Ecol, 2011, 22(1): 79-85. (in Chinese with English abstract) | |
[5] | 杨连新, 王余龙, 黄建晔, 杨洪建, 刘红江. 开放式空气 CO2 浓度增高对水稻生长发育影响的研究进展. 应用生态学报, 2006, 17(7): 1331-1337. |
Yang L X, Wang Y L, Huang J Y, Yang H J, Liu H J.Responses of rice growth and development to free-air CO2 enrichment(FACE): A research review.Chin J Appl Ecol, 2006, 17(7): 1331-1337. (in Chinese with English abstract) | |
[6] | 蒋跃林, 张庆国, 岳伟, 姚玉刚, 王公明,. 大气CO2浓度升高对大豆生长和产量的影响. 中国农学通报, 2005, 21(6): 355-357. |
Jiang Y L, Zhang Q G, Yue W, Yao Y G, Wang G M.Effects of elevated atmospheric CO2 concentration on growth and yield of soybean.Chin Agric Sci Bull, 2005, 21(6): 355-357. (in Chinese with English abstract) | |
[7] | 郝林, 徐昕, 曹军. 一种拟南芥突变体对高浓度 CO2反应的研究. 应用生态学报, 2003,14(12): 2359-2360. |
Hao L, Xu X, Cao J.Response of an Arabidopsis mutant to elevated CO2 concentration.Chin J Appl Ecol, 2003, 14(12): 2359-2360. (in Chinese with English abstract) | |
[8] | Bindi M, Hacour A, Vandermeiren K, Craigon J, Ojanper&Auml K. Chlorophyll concentration of potatoes grown under elevated carbon dioxide and/or ozone concentrations.Eur J Agron, 2002, 17(4): 319-335. |
[9] | Koti S, Reddy K R, Kakani V G, Zhao D, Gao W.Effects of carbon dioxide, temperature and ultraviolet-B radiation and their interactions on soybean (Glycine max L.) growth and development.Environ Exper Bot, 2007, 60(1): 1-10. |
[10] | 余峥, 胡庭兴, 王开运, 张远彬. 植物光合作用对大气 CO2和温度升高的响应及其适应机制的研究进展. 四川林业科技, 2006, 27(2): 30-35. |
Yu Z, Hu T X, Wang K Y, Zhang Y B.Responses and acclimatization mechanism of plant photosynthesis to elevated atmospheric CO2 concentration and temperature.J Sichuan For Sci Technol, 2006, 27(2): 30-35. (in Chinese with English abstract) | |
[11] | 彭博, 王文晶, 周可新, 陈法军. CO2浓度升高对转 Bt 水稻生理指标的影响. 生态学杂志, 2014, 33(12): 3254-3261. |
Peng B, Wang W J, Zhou K X, Chen F J.Effect of elevated CO2 on physiological indexes of transgenic Bt rice.Chin J Ecol, 2014, 33(12): 3254-3261. (in Chinese with English abstract) | |
[12] | 万运帆, 游松财, 李玉娥, 王斌, 高清竹, 秦晓波, 刘硕. CO2浓度和温度升高对早稻生长及产量的影响. 农业环境科学学报, 2014, 33(9): 1693-1698. |
Wan Y F, You S C, Li Y E, Wang B, Gao Q Z, Qin X B, Liu S.Influence of elevated atmospheric CO2 concentration and temperature on growth and yield of early rice.J Agro-Environ Sci, 2014, 33(9): 1693-1698. (in Chinese with English abstract) | |
[13] | 蔡威威, 万运帆, 艾天成, 游松财, 李玉娥, 王斌. 空气温度和 CO2浓度升高对晚稻生长及产量的影响. 中国农业气象, 2015, 36(6): 717-723. |
Cai W W, Wan Y F, Ai T C, You S C, Li Y E, Wang B.Impacts of elevated CO2 concentration and temperature increasing on growth and yield of late rice.Chin J Agrometeorol, 2015, 36(6): 717-723. (in Chinese with English abstract) | |
[14] | 周娟, 胡健, 杨连新, 王余龙, 朱建国. FACE 对水稻生育前期功能叶片叶绿素含量及其组成的影响.扬州大学学报:农业与生命科学版, 2008, 29(4): 9-62. |
Zhou J, Hu J, Yang L X, Wang Y L, Zhu J G.Effect of free-air CO2 enrichment (FACE) on chorophyll content and its composition in functional leaves of japonica rice (Oryza sativa L.) during early growth stage. J Yangzhou Univ:Agric Life Sci Edi, 2008, 29(4): 9-62. (in Chinese with English abstract) | |
[15] | Chen G Y, Yong Z H, Liao Y, Zhang D Y, Chen Y, Zhang H B, Chen J, Zhu J G, Xu D Q.Photosynthetic acclimation in rice leaves to Free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.Plant Cell Physiol, 2005, 46(7): 1-10. |
[16] | 胡健, 周娟, 杨连新, 王余龙, 朱建国. 水稻结实期剑叶叶绿素含量和组成FACE 的动态响应. 农业环境科学学报, 2007, 26(4): 1322-1326. |
Hu J, Zhou J, Yang L X, Wang Y L, Zhu J G.Effect of free air CO2 enrichment (FACE) on dynamics of chlorophyll content and composition in flag leaves of rice during grain filling stage.J Agro-Environ Sci, 2007, 26(4): 1322-1326. (in Chinese with English abstract) | |
[17] | 谢立勇, 孙雪, 赵洪亮, 冯永祥, 姜乐. FACE 条件下水稻生育后期剑叶光合色素含量及产量构成的响应研究.中国生态农业学报, 2015, 23(4): 425-431. |
Xie L Y, Sun X, Zhao H L, Feng Y X, Jiang L.Responses of flag-leaf photosynthetic pigments at late growth stage and rice yield components to elevated CO2 under FACE system.Chin J Eco-Agric, 2015, 23(4): 425-431. (in Chinese with English abstract) | |
[18] | 杜尧东, 李键陵, 王华, 唐湘如, 胡飞. 高温胁迫对水稻剑叶光合和叶绿素荧光特征的影响. 生态学杂志, 2012, 31(10): 2541-2548. |
Du Y D, Li J L, Wang H, Tang X R, Hu F.Effects of high temperature stress on the flag leaf photosynthesis and chlorophyll fluorescence parameters of rice.Chin J Ecol, 2012, 31(10): 2541-2548. (in Chinese with English abstract) | |
[19] | 景立权, 赖上坤, 王云霞, 杨连新, 王余龙,. 大气CO2 浓度和温度互作对水稻生长发育影响的研究进展. 生态学报, 2016, 36(14): 4254-4265. |
Jing L Q, Lai S K, Wang Y X, Yang L X, Wang Y L.Combined effect of increasing atmospheric CO2 concentration and temperature on growth and development of rice: A research review.Acta Ecol Sin, 2016, 36(14): 4254-4265. (in Chinese with English abstract) | |
[20] | Lobell D B, Gourdji S M.The influence of climate change on global crop productivity.Plant Physiol, 2012, 160: 1686-1697. |
[21] | Long S P, Ainsworth E A, Leakey A D B, Nösberger J, Ort D R. Food for Thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations.Science, 2006, 312(5782): 1918-1921. |
[22] | 周宁, 沈士博, 景立权, 王云霞, 朱建国, 杨连新, 王余龙.自由空气中CO2浓度和温度增高对粳稻叶片光合作用日变化的影响. 生态学杂志, 2016, 35(9): 2404-2416. |
Zhou N, Shen S B, Jing L Q, Wang Y X, Zhu J G, Yang L X, Wang Y L.Effects of elevated atmospheric CO2 and temperature on diurnal courses of photosynthesis in leaves of Japonica rice.Chin J Ecol, 2016, 35(9): 2404-2416. (in Chinese with English abstract) | |
[23] | 赖上坤, 庄时腾, 吴艳珍, 王云霞, 朱建国, 杨连新, 王余龙,. 大气CO2浓度和温度升高对超级稻生长发育的影响. 生态学杂志, 2015, 34(5): 1253-1262. |
Lai S K, Zhuang S T, Wu Y Z, Wang Y X, Zhu J G, Yang L X, Wang Y L.Impact of elevated atmospheric CO2 concentration and temperature on growth and development of super rice.Chin J Ecol, 2015, 34(5): 1253-1262. (in Chinese with English abstract) | |
[24] | 彭长连, 林植芳, 孙梓健, 林桂珠, 陈贻竹. 水稻光合作用对加富 CO2的响应. 植物生理学报, 1998, 24(3): 272-278. |
Peng C L, Lin Z F, Sun Z J, Lin G Z, Chen Y Z.Response of rice photosynthesis to CO2 enrichment.Acta Photophysiol Sin, 1998, 24(3): 272-278. (in Chinese with English abstract) | |
[25] | Haque M M, Hamid A, Khanam M, Biswas D K, Karim M A, Khaliq Q A, Hossain M A, Uprety D C.The effect of elevated CO2 concentration on leaf chlorophyll and nitrogen contents in rice during post-flowering phases.Biol Plant, 2006, 50(1): 69-73. |
[26] | 廖轶, 陈根云, 张道允, 肖元珍, 朱建国, 许大全. 冬小麦光合作用对开放式空气 CO2浓度增高(FACE)的非气孔适应. 植物生理与分子生物学学报, 2003, 29(6): 494-500. |
Liao Y, Chen G Y, Zhang D Y, Xiao Y Z, Zhu J G, Xu D Q.Non-stomatal acclimation of leaf photosynthesis to Free-Air CO2 enrichment( FACE) in winter wheat.J Plant Physiol Mol Biol, 2003, 29(6): 494-500. (in Chinese with English abstract) | |
[27] | 孟军, 陈温福, 徐正进, 李磊鑫, 周淑清. 水稻剑叶净光合速率与叶绿素含量的研究初报. 沈阳农业大学学报, 2001, 32(4): 247-249. |
Meng J, Chen W F, Xu Z J, Li L X, Zhou S Q.Study on photosynthetic rate and chlorophyll content.J Shenyang Agric Univ, 2001, 32(4): 247-249. (in Chinese with English abstract) | |
[28] | 陈景蕊, 潘静. 不同品种葡萄叶片SPAD值与叶绿素含量相关性分析. 北方园艺, 2015, (19): 42-46. |
Chen J R, Pan J.Study on the correlations of accumulation between sugar and fatty during Cyperus esculentus tuber development.Nor Hortic, 2015, (19): 42-46. (in Chinese with English abstract) | |
[29] | 陈小龙, 陈灿, 周莉. 水稻不同生育期叶绿素含量的测定及其相关性分析. 现代农业科技, 2010, (17): 42-52. |
Chen X L, Chen C, Zhou L.Determination and correlativity analysis of chlorophyll content at different developmental stages in rice.Mod Agric Sci Technol, 2010, (17): 42-52. (in Chinese with English abstract) | |
[30] | Monje O, Bugbee B.Adaptation to high CO2 concentration in an optimal environment: radiation capture, canopy quantum yield and carbon use efficiency.Plant Cell Environ, 1998, 21: 315-324. |
[31] | Nagai T, Makino A.Differences between rice and wheat in temperature responses of photosynthesis and plant growth.Plant Cell Physiol, 2009, 50(4): 744-755. |
[32] | 童汉华, 梅捍卫, 邢永忠, 曹一平, 余新桥, 章善庆, 罗利君. 水稻生育后期剑叶形态和生理特性的 QTL 定位. 中国水稻科学, 2007, 21(5): 493-499. |
Tong H H, Mei H W, Xing Y Z, Cao Y P, Yu X Q, Zhang S Q, Luo L J.QTL analysis for morpholoical and physioloical characteristics of flag leaf at the late developmental stage in rice.Chin J Rice Sci, 2007, 21(5): 493-499. (in Chinese with English abstract) | |
[33] | Moore B D, Cheng S H, Sims D, Seemann J R.The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2.Plant Cell Environ, 2002, 22(6): 567-582. |
[34] | Rogers A, Humphries S W.A mechanistic evaluation of photosynthetic acclimation at elevated CO2.Glob Chang Biol, 2000, 6(8): 1005-1011. |
[35] | Zhu C W, Ziska L, Zhu J, Xie Z, Tang H, Hasegawa T.The temporal and species dynamics of photosynthetic acclimation in flag leaves of rice (Oryza sativa) and wheat (Triticum aestivum) under elevated carbon dioxide.Physiol Plant, 2012, 145(3): 395-405. |
[1] | ZHAO Yiting, XIE Keran, GAO Ti, CUI Kehui. Effects of Drought Priming During Tillering Stage on Panicle Development and Yield Formation Under High Temperature During Panicle Initiation Stage in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(3): 277-289. |
[2] | YI Xiaoxuan, LIU Weiqi, ZENG Gai, LUO Lihua, XIAO Yinghui. Effect of High Temperature Stress at Grain Filling Stage on Early indica Rice Quality Traits [J]. Chinese Journal OF Rice Science, 2024, 38(1): 72-80. |
[3] | WANG Jun, ZHOU Jing, TAO Yajun, LI Wenqi, ZHU Jianping, FAN Fangjun, WANG Fangquan, XU Yang, CHEN Zhihui, JIANG Yanjie, LI Xia, YANG Jie. Development of HRM-based Functional Marker for Gelatinization Temperature Gene ALK in Rice [J]. Chinese Journal OF Rice Science, 2024, 38(1): 106-110. |
[4] | WANG Shengyong, CHEN Yuhang, CHEN Huili, HUANG Yujie, ZHANG Xiaotian, DING Shuangcheng, WANG Hongwei. Effects of High Temperature on Phenylpropane Metabolism and Downstream Branch Metabolic Pathways in Rice Meiosis [J]. Chinese Journal OF Rice Science, 2023, 37(4): 368-378. |
[5] | DUAN Min, XIE Liujie, GAO Xiuying, TANG Haijuan, HUANG Shanjun, PAN Xiaobiao. Creation of Thermo-sensitive Genic Male Sterile Rice Lines with Wide Compatibility Based on CRISPR/Cas9 Technology [J]. Chinese Journal OF Rice Science, 2023, 37(3): 233-243. |
[6] | LIN Dan, JIANG Min, MIAO Bo, GUO Meng, SHI Chunlin. Research on Simulation Model of High Temperature Stress on Rice and Its Application in Fujian Province [J]. Chinese Journal OF Rice Science, 2023, 37(3): 307-320. |
[7] | CHEN Liming, YANG Taotao, XIONG Ruoyu, TAN Xueming, HUANG Shang, ZENG Yongjun, PAN Xiaohua, SHI Qinghua, ZHANG Jun, ZENG Yanhua. Effect of Free-air Temperature Increasing on Activities of Enzymes Involved in Starch Synthesis and Accumulation of Double-cropping indica Rice [J]. Chinese Journal OF Rice Science, 2023, 37(2): 166-177. |
[8] | CAO Yuexuan, YAN Huijing, WANG Kejian, LIU Chaolei. Rapid Identification of Rice Clonal Seeds Generated by Synthetic Apomixis at Seedling Stage [J]. Chinese Journal OF Rice Science, 2022, 36(6): 656-662. |
[9] | CHEN Hongyang, JIA Yan, ZHAO Hongwei, QU Zhaojun, WANG Xinpeng, DUAN Yuyang, YANG Rui, BAI Xu, WANG Changcheng. Effects of Low Temperature Stress During Grain Filling on Starch Formation and Accumulation of Superior and Inferior Grains in Rice [J]. Chinese Journal OF Rice Science, 2022, 36(5): 487-504. |
[10] | HUANG Qina, JIANG Su, WANG Limin, ZHANG Yan, YU Linfei, LI Chunfu, DING Liqun, SHAO Guosheng. Effects of Moisture Content on Root Vigor and the Expression of Aquaporin-related Genes in Rice Seedlings Under Low Temperature Stress [J]. Chinese Journal OF Rice Science, 2022, 36(4): 367-376. |
[11] | SHEN Hong, YAO Dongping, WU Jun, LUO Qiuhong, WU Zhipeng, LEI Dongyang, DENG Qiyun, BAI Bin. Effects of High Temperature in Various Phases of Grain Filling on Rice Starch Physicochemical Properties [J]. Chinese Journal OF Rice Science, 2022, 36(4): 377-387. |
[12] | HE Jiachun, HE Yuting, WAN Pinjun, WEI Qi, LAI Fengxiang, CHEN Xiangsheng, FU Qiang. Effects of Temperature on Biological Traits of the Pincer Wasp [Gonatopus flavifemur (Esaki & Hashimoto)], a Natural Enemy of the Brown Planthopper(Nilaparvata lugens) [J]. Chinese Journal OF Rice Science, 2022, 36(3): 318-326. |
[13] | XU Qingshan, HUANG Jing, SUN Aijun, HONG Xiaozhi, ZHU Lianfeng, CAO Xiaochuang, KONG Yali, JIN Qianyu, ZHU Chunquan, ZHANG Junhua. Effects of Low Temperature on the Growth and Development of Rice Plants and the Advance of Regulation Pathways: A Review [J]. Chinese Journal OF Rice Science, 2022, 36(2): 118-130. |
[14] | Haoliang YAN, Song WANG, Xueyan WANG, Chengcheng DANG, Meng ZHOU, Rongrong HAO, Xiaohai TIAN. Performance of Different Rice Varieties Under High Temperature and Its Relationship with Field Meteorological Factors [J]. Chinese Journal OF Rice Science, 2021, 35(6): 617-628. |
[15] | Mengjia WANG, Min YIN, Guang CHU, Yuanhui LIU, Chunmei XU, Xiufu ZHANG, Danying WANG, Song CHENG. Ecological Differences in Yield, Growth Period and the Utilization of Temperature and Light Resources of Double-cropping Late japonica Rice in the Middle and Lower Reaches of the Yangtze River [J]. Chinese Journal OF Rice Science, 2021, 35(5): 475-486. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||