中国水稻科学
     首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  留言板  |  联系我们  |  English
中国水稻科学  2010, Vol. 24 Issue (6): 608-616     DOI: 10.3969/j.issn.1001-7216.2010.06.008
研究报告 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
温室条件下抗除草剂转基因水稻与杂草稻杂交和回交后代的适合度分析
左娇;强胜;宋小玲*
南京农业大学 杂草研究室, 江苏 南京 210095; *通讯联系人, E-mail: sxl@njau.edu.cn
Fitness of Progenies Between Transgenic Rice and Weedy Rice under Greenhouse Conditions
ZUO Jiao;QIANG Sheng;SONG Xiao-ling*

Weed Research Laboratory, Nanjing Agricultural University, Nanjing 210095, China; *Corresponding author, E-mail: sxl@njau.edu.cn

 全文: PDF (175 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 在温室条件下,将抗除草剂转基因水稻Y0003和991与马来西亚杂草稻和国内安徽塘稻人工授粉获得的携带抗性基因的F1、F2与相应杂草稻回交,统计回交结实率和携带抗性基因的比例,并对携带抗性基因的杂交/回交代的适合度进行了测定,综合判断抗性基因漂移的风险。研究表明,在人工授粉的条件下,携带抗性基因的杂交代都能与相应的杂草稻回交并结实,结实率为15%~60%。F1的种子绝大多数都对草丁膦表现出了良好的抗性,F2和回交代分别表现为3∶1和1∶1的抗性分离比例,符合孟德尔遗传规律。适合度研究表明,杂交代、回交代与相应的杂草稻相比没有明显差异,大多数的杂交种的适合度和回交代相差不大,个别杂交代的适合度没有回交代高。以上研究结果表明在无除草剂选择压下,携带转基因水稻Y0003和991的抗性基因的2种杂草稻的杂交和回交后代有在适宜环境条件下生存定植的可能性。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
左娇
强胜
宋小玲
关键词抗除草剂转基因水稻   杂草稻   后代   环境安全性   适合度     
AbstractIn greenhouse, the F1 and F2 hybrids derived from glufosinateresistant transgenic rice (Y0003 and 991) and Malaysian weedy rice or Anhui weedy rice were backcrossed with corresponding weedy rice to obtain backcross generations. And the seed setting rates of the backcross were counted. The proportions of plants carrying the glufosinateresistance gene in F1 or F2 hybrids and the backcross generation were calculated. In order to comprehensively assess the risk of gene flow from glufosinateresistant rice to weedy rice, the fitness of hybrid and backcross generations were observed. The results showed that the hybrid generations were able to backcross with corresponding weedy rice with seed setting rates from 15% to 60%. The seeds from reciprocal hybrid F1 generation showed favorable glufosinateresistance, but F2 and backcross generations showed a normal 3∶1 and 1∶1 Mendelian segregation with glufosinate selection. The fitness of hybrid and backcross generations didn′t differ obviously from that of their corresponding weedy rice. Most hybrid generations displayed similar fitness with backcross generations, but some hybrid generations were lower than backcross generations in fitness. All above results indicate that hybrids and backcross generations of two weedy rice carrying glufosinateresistance genes of Y0003 and 991 could survive under benign conditions without herbicide selection.
Key wordsherbicideresistant transgenic rice   weedy rice   progeny   environmental biosafety   fitness   
收稿日期: 1900-01-01;
引用本文:   
左娇,强胜,宋小玲. 温室条件下抗除草剂转基因水稻与杂草稻杂交和回交后代的适合度分析[J]. 中国水稻科学, 2010, 24(6): 608-616 .
ZUO Jiao,QIANG Sheng,SONG Xiao-ling* . Fitness of Progenies Between Transgenic Rice and Weedy Rice under Greenhouse Conditions[J]. , 2010, 24(6): 608-616 .
 
[1] Chevre A M, Eber F, Baranger A, et al. Gene flow from transgenic crops. Nature, 1997, 389: 924.
[2] Madsen K H, Valverde B E, Jensen J E. Risk assessment of herbicide-resistant crops: A Latin American perspective using rice (Oryza sativa) as a model. Weed Technol, 2002, 16: 215-223.
[3] Chapman M A, Burke J M. Letting the gene out of the bottle: The population genetics of genetically modified crops. New Phytol, 2006, 170: 429-443.
[4] Oka H I, Chang W T. Hybrid swarms between wild and cultivated rice species Oryza perennis and O. sativa. Evolution, 1961, 15: 418-430.
[5] Langevin S A, Clay K, Grace J. The incidence and effects of hybridization between cultivated rice and its related weed red rice (Oryza sativa L.). Evolution, 1990, 44: 1000-1008.
[6] Noldin J A, Yokoyama S, Antunes P, et al. Outcrossing potential of glufosinate-resistant rice to red rice. Planta Daninha, 2002, 20(2): 243-251.
[7] Zhang N Y, Linscombe S, Oard J. Out-crossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice. Euphytica, 2003, 130(1): 35-45.
[8] Zhang W Q, Linscombe S D, Webster E, et al. Risk assessment of the transfer of imazethapyr herbicide tolerance from Clearfield rice to red rice (Oryza sativa). Euphytica, 2006, 152: 75-86.
[9] Shivrain V K, Burgos N R, Anders M M, et al. Gene flow between ClearfieldTM rice and red rice.Mol Breeding, 2007, 26: 349-356.
[10] Messeguer J, Marfa V, Catala M M, et al. A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed. Mol Breeding, 2004, 13: 103-112.
[11] Chen L J, Lee D S, Song Z P, et al. Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann Bot, 2004, 93: 67-73.
[12] Mercer K L, Andow D A, Wyse D L, et al. Stress and domestication traits increase the relative fitness of crop wild hybrids in sunflower. Ecol Lett, 2007, 10: 383-393.
[13] Endler J A. Geographic Variation, Speciation and Clines. Princeton, NJ: Princeton University Press, 1977.
[14] Gueritaine G, Sester M, Eber F, et al. Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Mol Ecol, 2002, 11: 1419-1426.
[15] Lu B R, Snow A A. Gene flow from genetically modified rice and its environmental consequences. BioScience, 2005, 55(8): 669-678.
[16] Oard J, Cohn M A, Linscombe S, et al. Field evaluation of seed prodution, shattering, and dormancy in hybrid populations of transgenic rice (Oryza sativa) and the weed, red rice (Oryza sativa). Plant Sci, 2000, 157(1): 13-22.
[17] Shivrain V K, Burgos N R, Gealy D R, et al. Gene flow from weedy red rice (Oryza sativa L.) to cultivated rice and fitness of hybrids. Pest Manag Sci, 2009, 65: 1124-1129.
[18] Cao Q J, Xia H, Yang X, et al. Performance of hybrids between weedy rice and insect-resistant transgenic rice under field experiments: Implication for environmental biosafety assessment. J Int Plant Biol, 2009, 51: 1138-1148.
[19] 刘琳莉. 以种间亲和性评价抗除草剂转基因作物安全性的技术研究[D]. 南京: 南京农业大学, 2004.
[20] Park S H, Pinson S R M, Smith R H. T-DNA integration into genomic DNA of rice following Agrobacterium inoculation of isolated shoot apices. Plant Mol Biol, 1996, 32: 1135-1148.
[21] Escorial M C, Sixto H, García-Baudín J M, et al. A rapid method to determine cereal plant response to glyphisate. Weed Technol, 2001, 15: 697-702.
[22] 陈游, 程世军, 王江, 等. 检测转基因水稻中PPT抗性表达的快速简便方法. 植物生理学通讯, 2000, 36(1): 50-52.
[23] Song Z P, Lu B R, Wang B, et al. Fitness estimation through performance comparison of F1 hybrids with their parental species Oryza rufipogon and O. sativa. Ann Bot, 2004, 93: 311-316.
[24] Rice W R. Analyzing tables of statistical tests. Evolution, 1989, 43: 223-225.
[25] Jenczewski E, Ronfort J, Chévre A M. Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environ Biosafety Res, 2003, 2: 9-24.
[26] Sankula S, Braverman M P, Orrd J H. Genetic analysis of glufosinate resistance in crosses between transformed rice (Oryza sativa) and red rice (Oryza sativa). Weed Technol, 1998, 12: 209-214.
[27] Jiang J, Linscombe S D, Wang J L, et al. High efficiency transformation of U.S. rice lines from mature seed derived calli and segregation of glufosinate resistance under field conditions. Crop Sci, 2000, 40: 1729-1741.
[28] Arriola P E, Ellstrand N C. Fitness of interspecific hybrids in the genus Sorghum: Persistence of crop genes in wild populations. Ecol Appl, 1997, 7: 512-518.
[29] Baker H G. The evolution of weeds. Ann Rev Ecol Syst, 1974, 5: 1-24.
[30] 强胜. 杂草学. 北京: 中国农业出版社, 2001: 2.
[31] Waser N M, Price M V. Optimal outcrossing in Ipomopsis aggregate, seed set and offspring fitness. Evolution, 1989, 43: 1097-1109.
[32] Byers D L. Effect of cross proximity on progeny fitness in a rare and a common species of Eupatorium (Asteraceae). Am J Bot, 1998, 85(5): 644-653.
[33] Emms S K, Arnold M L. The effect of habitat on parental and hybrid fitness: Transplant experiments with Louisiana irises. Evolution, 1997, 51: 1112-1119.
[34] Vacher C, Weis A E, Hermann D. Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theor Appl Genet, 2004, 109: 806-814.
[35] Brock M T, Galen C. Drought tolerance in the alpine dandelion, Taraxacum ceratophorum (Asteraceae), its exotic congener T. officinale, and interspecific hybrids under natural and experimental conditions. Am J Bot, 2005, 92: 1311-1321.
[36] Campbell L G, Snow A A. Competition alters life history and increase the relative fecundity of crop wild radish hybrids (Raphanus spp.). New Phytol, 2007, 173: 648-660.
[37] Campbell D R, Waser N M. Genotype by environment interaction and the fitness of plant hybrids in the wild. Evolution, 2001, 55: 669-676.
[38] Johnston J A, Grise D J, Donovan L A, et al. Environment-dependent performance and fitness of Iris brevicaulis, I. fulva (Iridaceae), and hybrids. Am J Bot, 2001, 88: 933-938.
[39] Pertl M, Hauser T P, Damgaard C, et al. Male fitness of oilseed rape (Brassica napus), weedy B. rapa and their F1 hybrids when pollinating B. rapa seeds. Heredity, 2002, 89: 212-218.
[40] Johannessen M M, Andersen B A, Jφrgensen R B. Competition affects gene flow from oilseed rape (♀) to Brassica rapa (♂). Heredity, 2006, 96: 360-367.
[41] Whitney K D, Randell R A, Rieseberg L H. Adaptive introgression of herbivore resistance traits in weedy sunflower Helianthus annuus. Am Nat, 2006, 167: 794-807.
[42] 蒋荷, 吴竞仑, 王根来, 等. 连云港穞稻研究. 作物品种资源,1985(2): 4-7.
[43] 许聪, 吴万春. 海南岛杂草稻的生态考查和鉴定. 中国水稻科学, 1996, 10(4): 247-249. 浏览
[44] 许聪, 吴万春. 杂草稻的分类地位和利用途径探讨. 海南大学学报: 自然科学版, 1996, 14(2): 146-151.
[45] 马殿荣, 陈温福, 徐正进, 等. 辽宁杂草稻的发生及其控制措施. 中国农学通报, 2005, 21(8): 358-360, 365.
[46] 郭勋斌, 顾克礼, 袁秦. 越冬杂草稻的发生与防治研究. 安徽农业科学, 2005, 33(7): 1180-1181.
[1] 杨杰 ,曹卿 ,王军 ,范方军,张玉琼,仲维功, . 水稻多酚氧化酶基因功能标记的开发与应用 [J]. 中国水稻科学, 2011, 25(1): 37-42 .
[2] 黄 星,李晓光,刘洪亮,徐美兰, 张丰转,张忠臣,金正勋. 水稻籽粒蛋白质含量选择对杂交后代蛋白质含量及氮代谢关键酶活性的影响[J]. 中国水稻科学, 2009, 23(6): 657-660 .
[3] 杨 琳,戴伟民,强 胜,宋小玲. 杂草稻和栽培稻叶片下表皮结构特征的观察及聚类分析[J]. 中国水稻科学, 2009, 23(5): 495-502 .
[4] 杨 杰,王 军,曹 卿,陈志德,汤陵华,王艳萍,方先文,王才林,仲维功. 江淮流域杂草稻叶绿体DNA的籼粳分化[J]. 中国水稻科学, 2009, 23(4): 391-397 .
[5] 李晓光 刘海英,金正勋刘洪亮,黄 星,徐美兰 . 水稻杂交后代灌浆成熟期籽粒淀粉合成关键酶和谷氨酰胺合成酶活性变化的初步研究[J]. 中国水稻科学, 2009, 23(4): 443-446 .
[6] 刘海英,李晓光,刘宏亮,黄 星,徐美兰,金正勋. 水稻杂种后代籽粒直链淀粉含量选择与品质和产量性状的关系[J]. 中国水稻科学, 2009, 23(1): 103-103~106 .
[7] 乔慧刘 芳,罗 举,赖凤香,傅 强王华弟,戴德江. 不同植物上灰飞虱适合度的研究[J]. 中国水稻科学, 2009, 23(1): 71-71~78 .
[8] 马殿荣,王楠,王莹,贾德涛,陈温福. 中国北方杂草稻深覆土条件下出苗动力源分析[J]. 中国水稻科学, 2008, 22(2): 215-218 .
[9] 王际凤,陆作楣,. 恢复基因的渗入对红莲型不育系粤泰A纯度的影响[J]. 中国水稻科学, 2007, 21(5): 500-506 .
[10] 邵国胜,谢志奎,张国平,. 杂草稻和栽培稻氮代谢对镉胁迫反应的差异[J]. 中国水稻科学, 2006, 20(2): 189-193 .
[11] 张传清,周明国. 以nit和抗药性为遗传标记研究稻瘟病菌的无性重组[J]. 中国水稻科学, 2005, 19(3): 288-290 .
[12] 陈惠哲, 玄松南, 王渭霞, 邵国胜, 孙宗修. 丹东杂草稻种子的耐冻能力和低温发芽特性研究[J]. 中国水稻科学, 2004, 18(2): 109-112 .
[13] 刘泽文, 韩召军, 张玲春. 褐飞虱不同品系杂交子代抗药性和适合度的变化[J]. 中国水稻科学, 2004, 18(2): 167-170 .
[14] 刘国庆 ,颜辉煌 , 罗耀武 ,闵绍楷 ,朱立煌 ,. 栽培稻与紧穗野生稻间整倍体后代的RFLP分析[J]. 中国水稻科学, 1999, 13(3): 129-133 .
[15] 何光华 ,谢 戎 ,郑家奎 ,阴国大 ,杨正林 ,左永树 ,黄建国 ,邵启明 . 水稻杂种后代籽粒蛋白质含量的分离和变异[J]. 中国水稻科学, 1997, 11(2): 118-120 .
[16] 许 聪 ,吴万春 . 海南岛杂草稻的生态考察和鉴定[J]. 中国水稻科学, 1996, 10(4): 247-249 .
[17] 杨守仁,张龙步,陈温福,徐正进,王进民. 水稻超高产育种的理论和方法[J]. 中国水稻科学, 1996, 10(2): 115-120 .
[18] 安林昇,倪晋山. 籼粳杂交后代幼苗NH4吸收、同化的效率[J]. 中国水稻科学, 1991, 5(2): 83-86 .
版权所有 © 《中国水稻科学》编辑部 浙ICP备05004719号-5
地 址:浙江省杭州市体育场路359号   邮 编:310006   电 话:0571-63370278   E-mail:cjrs@263.net
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn