| [1] |
Tian Z X, Qian Q, Liu Q Q, Yan M X, Liu X F, Yan C J, Liu G F, Gao Z Y, Tang S Z, Zeng D L, Wang Y H, Yu J M, Gu M H, Li J Y. Allelic diversities in rice starch biosynthesis lead to a diverse array of rice eating and cooking qualities[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(51): 21760-21765.
|
| [2] |
张栋昊, 蔡妍培, 劳菲, 吴继红. 大米蛋白质与米饭食味品质关联性研究进展[J]. 食品科学, 2023, 44(9): 270-277.
|
|
Zhang D H, Cai Y P, Lao F, Wu J H. Research progress on the relationship between rice protein and eating quality[J]. Food Science, 2023, 44(9): 270-277. (in Chinese with English abstract)
|
| [3] |
许锐, 隋勇, 李书艺, 祝振洲, 周雷, 施建斌, 蔡沙, 熊添, 蔡芳, 梅新. 稻米食味品质影响因素研究进展[J]. 食品安全质量检测学报, 2024, 15(7): 234-241.
|
|
Xu R, Sui Y, Li S Y, Zhu Z Z, Zhou L, Shi J B, Cai S, Xiong T, Cai F, Mei X. Research progress on influencing factors of rice eating quality[J]. Journal of Food Safety and Quality, 2024, 15(7): 234-241. (in Chinese with English abstract)
|
| [4] |
Sano Y. Differential regulation of waxy gene expression in rice endosperm[J]. Theoretical and Applied Genetics, 1984, 68(5): 467-473.
|
| [5] |
Sano Y, Katsumata M, Okuno K. Genetic studies of speciation in cultivated rice: 5. Inter-and intraspecific differentiation in the waxy gene expression of rice[J]. Euphytica, 1986, 35(1): 1-9.
|
| [6] |
Zhang C Q, Zhu J H, Chen S J, Fan X L, Li Q F, Lu Y, Wang M, Yu H X, Yi C D, Tang S Z, Gu M H, Liu Q Q. Wxlv, the ancestral allele of rice Waxy gene[J]. Molecular Plant, 2019, 12: 1157-1166.
|
| [7] |
Zhang C Q, Yang Y, Chen S J, Liu X J, Zhu J H, Zhou L H, Lu Y, Li Q F, Fan X L, Tang S Z, Gu M H, Liu Q Q. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. Journal of Integrative Plant Biology, 2021, 63(5): 889-901.
|
| [8] |
Zhou H, Xia D, Zhao D, Li Y H, Li P B, Wu B, Gao G J, Zhang Q L, Wang G W, Xiao J H, Li X H, Yu S B, Lian X M, He Y Q. The origin of Wxla provides new insights into the improvement of grain quality in rice[J]. Journal of Integrative Plant Biology, 2021, 63(5): 878-888.
|
| [9] |
毛慧, 彭彦, 毛毕刚, 韶也, 郑文杰, 胡黎明, 周凯, 赵炳然. 水稻直链淀粉合成调控新基因Wx410的功能与效应分析[J]. 中国水稻科学, 2022, 36(6): 579-585.
|
|
Mao H, Peng Y, Mao B G, Shao Y, Zheng W J, Hu L M, Zhou K, Zhao B R. Function and effect analysis of a new gene Wx410 regulating amylose synthesis in rice[J]. Chinese Journal of Rice Science, 2022, 36(6): 579-585. (in Chinese with English abstract)
|
| [10] |
Bibikova M, Beumer K, Trautman J K, Carroll D. Enhancing gene targeting with designed zinc finger nucleases[J]. Science, 2003, 300(5620): 764.
|
| [11] |
Moscou M J, Bogdanove A J. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(11): 1501.
|
| [12] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, Zhang F. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339: 819-823.
|
| [13] |
Gaudelli N M, Komor A C, Rees H A, Packer M S, Badran A H, Bryson D I, Liu D R. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551: 464-471.
|
| [14] |
Zong Y, Song Q N, Li C, Jin S, Zhang D, Wang Y, Qiu J L, Gao C. Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A[J]. Nature Biotechnology, 2018, 36(10): 950-954.
|
| [15] |
任俊, 曹跃炫, 黄勇, 董慧荣, 刘庆, 王克剑. 基因编辑技术及其水稻中的发展和应用[J]. 中国稻米, 2021, 27(4): 92-100.
|
|
Ren J, Cao Y X, Huang Y, Dong H R, Liu Q, Wang K J. Function and effect analysis of a new gene Wx410 regulating amylose synthesis in rice[J]. China Rice, 2021, 27(4): 92-100. (in Chinese with English abstract)
|
| [16] |
Liu T T, Zou J P, Yang X, Wang K J, Rao Y C, Wang C. Development and application of prime editing in plants[J]. Rice Science, 2023, 30(6): 509-522.
|
| [17] |
Zhang J S, Zhang H, Botella J R, Zhu J K. Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties[J]. Journal of Integrative Plant Biology, 2018, 60(5): 369-375.
|
| [18] |
Huang L C, Li Q F, Zhang C Q, Chu R, Gu Z W, Tan H Y, Zhao D S, Fan X L, Liu Q Q. Creating novel Wx alleles with fine-tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J]. Plant Biotechnology Journal, 2020, 18(11): 2164-2166.
|
| [19] |
Zeng D C, Liu T L, Ma X L, Wang B, Zheng Z Y, Zhang Y L, Xie X R, Yang B W, Zhao Z, Zhu Q L, Liu Y G. Quantitative regulation of Waxy expression by CRISPR/Cas9-based promoter and 5'UTR-intron editing improves grain quality in rice[J]. Plant Biotechnology Journal, 2020, 18(12): 2385-2387.
|
| [20] |
Xu Y, Lin Q P, Li X F, Wang F Q, Chen Z H, Wang J, Li W Q, Fan F J, Tao Y J, Jiang Y J, Wei X D, Zhang R, Zhu Q H, Bu Q Y, Yang J, Gao C X. Fine-tuning the amylose content of rice by precise base editing of the Wx gene[J]. Plant Biotechnology Journal, 2021, 19: 11-13.
|
| [21] |
朱文银, 徐凤文, 姜明松, 陈峰, 徐建第, 朱其松, 杨连群, 马加清. 优质高产抗病水稻新品种圣稻18的选育及栽培技术[J]. 中国稻米, 2014, 20(2): 78-79.
|
|
Zhu W Y, Xu F W, Jiang M S, Chen F, Xu J D, Zhu Q S, Yang L Q, Ma J Q. Breeding and cultivation techniques of shengdao 18, a new rice variety with good quality, high yield and disease resistance[J]. China Rice, 2014, 20(2): 78-79. (in Chinese with English abstract)
|
| [22] |
李然, 钱前, 高振宇. 水稻品质的遗传与育种改良研究进展[J]. 生物技术通报, 2022, 38(4): 4-19.
|
|
Li R, Qian Q, Gao Z Y. Research progress in the inheritance and breeding improvement of rice quality[J]. Biotechnology Bulletin, 2022, 38(4): 4-19. (in Chinese with English abstract)
|
| [23] |
王才林, 陈涛, 张亚东, 朱镇, 赵凌, 林静. 通过分子标记辅助选择培育优良食味水稻新品种[J]. 中国水稻科学, 2009, 23(1): 25-30.
|
|
Wang C L, Chen T, Zhang Y D, Zhu Z, Zhao L, Lin J. Breeding of a new rice variety with good eating quality by marker assisted selection[J]. Chinese Journal of Rice Science, 2009, 23(1): 25-30. (in Chinese with English abstract)
|