中国水稻科学 ›› 2025, Vol. 39 ›› Issue (2): 220-230.DOI: 10.16819/j.1001-7216.2025.240105
刘智超1,2,#, 常龙学1,2,#, 艾鑫2, 金龙2, 张丰勇2, 李志永2, 王以锋2, 童晓红2, 黄捷2, 张健2, 金健1,*(), 应杰政2,*(
)
收稿日期:
2024-01-09
修回日期:
2024-02-06
出版日期:
2025-03-10
发布日期:
2025-03-19
通讯作者:
* email:jinjian@gxu.edu.cn;yingjiezheng@caas.cn
作者简介:
#共同第一作者
基金资助:
LIU Zhichao1,2,#, CHANG Longxue1,2,#, AI Xin2, JIN Long2, ZHANG Fengyong2, LI Zhiyong2, WANG Yifeng2, TONG Xiaohong2, HUANG Jie2, ZHANG Jian2, JIN Jian1,*(), YING Jiezheng2,*(
)
Received:
2024-01-09
Revised:
2024-02-06
Online:
2025-03-10
Published:
2025-03-19
Contact:
* email:jinjian@gxu.edu.cn;yingjiezheng@caas.cn
About author:
#These authors contributed equally to this paper
摘要:
【目的】基于水稻功能基因组学的快速发展,通过全基因组关联分析和等位基因挖掘,鉴定出调控每穗粒数的关键基因Gn1a的优异等位变异,为现代水稻高产分子育种策略提供了理论依据与靶点资源。【方法】通过构建高世代回交自交系遗传群体开展QTL精细定位;基于近等基因系(NILs)验证目标QTL的遗传效应;结合目标基因的PCR扩增、高通量测序及多序列比对解析功能变异位点;进一步开发功能分子标记并应用于水稻种质资源的基因型精准鉴定。【结果】在中嘉早17、中早39(常规早籼主推品种)、华占、R173(杂交晚籼核心恢复系)4个背景与粳稻吉资1560构建的BC₃F₃群体中,1号染色体短臂Gn1a位点共同定位到控制穗粒数与二次枝梗数的QTL。Gn1a测序分析揭示,中嘉早17与中早39携带新型Gn1a等位变异(命名为Gn1a-i),与粳型等位基因Gn1a-j相比,在5' UTR区存在16-bp缺失。4套近等基因系的分析结果表明Gn1a-i增加每穗粒数和籽粒产量。基于该InDel位点开发的共显性功能标记ZC51,对9类39份水稻材料(涵盖常规早籼、常规晚籼、三系保持系、两系不育系、三系恢复系、北方粳稻、南方粳稻、农家品种及野生稻)进行Gn1a等位基因分型检测,结果显示:籼型群体(常规早/晚籼、三系保持系、两系不育系、三系恢复系)100%携带Gn1a-i等位基因;野生稻与农家品种携带Gn1a-j等位基因;粳稻群体(南/北方)携带Gn1a-i和Gn1a-j双等位基因。【结论】明确了Gn1a-i等位基因通过增加二次枝梗数和每穗粒数来提高籽粒产量,Gn1a-i有利等位基因在当前粳稻品种的改良中具有较大利用潜力,Gn1a功能基因标记ZC51能直接用于分子标记辅助选择育种。
刘智超, 常龙学, 艾鑫, 金龙, 张丰勇, 李志永, 王以锋, 童晓红, 黄捷, 张健, 金健, 应杰政. 水稻穗粒数基因Gn1a的等位基因挖掘与育种应用[J]. 中国水稻科学, 2025, 39(2): 220-230.
LIU Zhichao, CHANG Longxue, AI Xin, JIN Long, ZHANG Fengyong, LI Zhiyong, WANG Yifeng, TONG Xiaohong, HUANG Jie, ZHANG Jian, JIN Jian, YING Jiezheng. Allele Mining and Breeding Application of Grain Number per Panicle Gene Gn1a in Rice[J]. Chinese Journal OF Rice Science, 2025, 39(2): 220-230.
图1 CSSL-H184染色体片段代换系基因型组成与实验材料构建流程 A: CSSL-H184染色体片段代换系基因型组成;B: 实验材料的构建流程。
Fig. 1. Graphical genotype of the chromosome segment substitution line CSSL-H184 and a flow chart of rice materials developed in this study A, Graphical genotype of the chromosome segments substitution line of CSSL-H184; B, A flew chart of rice materials developed in this study.
群体 Population | 性状 Trait | 区间 Interval | LOD值 LOD value | 加性效应 Additive effect | 显性效应 Dominance effect | 贡献率 Variation explained (%) |
---|---|---|---|---|---|---|
C1 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | JD1037−ZC51 | 4.01 | −3.40 | −0.04 | 12.70 | |
每穗粒数NGPP | JD1037−ZC51 | 4.00 | −13.94 | −0.12 | 12.70 | |
C2 | 一次枝梗数NPB | ZC51−ZC100 | 3.12 | −0.45 | −0.09 | 10.20 |
二次枝梗数NSB | ZC51−ZC100 | 5.22 | −3.87 | −3.02 | 16.50 | |
每穗粒数NGPP | ZC51−ZC100 | 4.89 | −18.52 | −13.97 | 15.60 | |
C3 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | JD1037−ZC51 | 4.04 | −3.68 | −1.31 | 13.70 | |
每穗粒数NGPP | JD1037−ZC51 | 2.99 | −11.39 | −4.77 | 10.40 | |
C4 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | ZC51−ZC100 | 5.63 | −3.08 | −0.37 | 18.70 | |
每穗粒数NGPP | ZC51−ZC100 | 5.10 | −10.71 | −2.03 | 17.10 |
表1 四个BC3F3群体中3个穗部性状的QTL分析
Table 1. QTL analysis of three panicle traits in 4 BC3F3 populations
群体 Population | 性状 Trait | 区间 Interval | LOD值 LOD value | 加性效应 Additive effect | 显性效应 Dominance effect | 贡献率 Variation explained (%) |
---|---|---|---|---|---|---|
C1 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | JD1037−ZC51 | 4.01 | −3.40 | −0.04 | 12.70 | |
每穗粒数NGPP | JD1037−ZC51 | 4.00 | −13.94 | −0.12 | 12.70 | |
C2 | 一次枝梗数NPB | ZC51−ZC100 | 3.12 | −0.45 | −0.09 | 10.20 |
二次枝梗数NSB | ZC51−ZC100 | 5.22 | −3.87 | −3.02 | 16.50 | |
每穗粒数NGPP | ZC51−ZC100 | 4.89 | −18.52 | −13.97 | 15.60 | |
C3 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | JD1037−ZC51 | 4.04 | −3.68 | −1.31 | 13.70 | |
每穗粒数NGPP | JD1037−ZC51 | 2.99 | −11.39 | −4.77 | 10.40 | |
C4 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | ZC51−ZC100 | 5.63 | −3.08 | −0.37 | 18.70 | |
每穗粒数NGPP | ZC51−ZC100 | 5.10 | −10.71 | −2.03 | 17.10 |
图3 Gn1a等位基因及编码的蛋白序列比较 A: Gn1a等位基因序列比对;B: Gn1a等位基因编码的氨基酸序列比对;红色方框为中嘉早17和中早39变异的氨基酸;JZ1560为吉资1560;ZJZ17为中嘉早17;ZZ39为中早39;HZ为华占。
Fig. 3. Comparison of Gn1a sequences and their corresponding amino acid sequences A, Sequence alignment of Gn1a alleles; B, Alignment of amino acid sequences encoded by the corresponding Gn1a alleles; The red box indicates the amino acid variant in Zhongjiazao 17 and Zhongzao 39. JZ1560, Jizi 1560; ZJZ17, Zhongjiazao 17; ZZ39, Zhongzao 39; HZ, Huazhan.
图4 四套NIL群体中Gn1a近等基因系农艺性状比较 A: 近等基因系农艺性状比较;星号表示显著差异(*P<0.05;**P<0.01);B: 近等基因系穗部表型对比;标尺为5 cm
Fig. 4. Comparison of agronomic traits between Gn1a near-isogenic lines in four NIL populations A, Comparison of agronomic characters between Gn1a near-isogenic lines in four NIL populations; Asterisks indicate significant difference (* P<0.05; ** P< 0.01); B, Comparison of panicle phenotypes between Gn1a near-isogenic lines; Bar=5 cm.
序号 No. | 品种名称 Variety | 类型 Type | 等位基因 Allele | 序号 No. | 品种名称 Variety | 类型 Type | 等位基因 Allele | ||
---|---|---|---|---|---|---|---|---|---|
1 | 吉资1560 Jizi 1560 | 供体亲本 Donor parent | Gn1a-j | 21 | 明恢 63 Minghui 63 | 三系恢复系 Three-line restorer line | Gn1a-i | ||
2 | 中早39 Zhongzao 39 | 常规早籼 Conventional early indica rice | Gn1a-i | 22 | 南粳 44 Nanjing 44 | 南方粳稻 Southern japonica rice | Gn1a-i | ||
3 | 中嘉早17 Zhongjiazao 17 | 常规早籼 Conventional early indica rice | Gn1a-i | 23 | 镇稻 88 Zhendao 88 | 南方粳稻 Southern japonica rice | Gn1a-i | ||
4 | 中鉴100 Zhongjian 100 | 常规早籼 Conventional early indica rice | Gn1a-i | 24 | 浙禾香 2 号 Zhehexiang 2 | 南方粳稻 Southern japonica rice | Gn1a-j | ||
5 | 舟903 Zhou 903 | 常规早籼 Conventional early indica rice | Gn1a-i | 25 | 春江糯 6 号 Chunjiangnuo 6 | 南方粳稻 Southern japonica rice | Gn1a-j | ||
6 | 黄华占 Huanghuazhan | 常规晚籼 Conventional late indica rice | Gn1a-i | 26 | 沈农 265 Shennong 265 | 北方粳稻 Northern japonica rice | Gn1a-j | ||
7 | 扬稻6号 Yangdao 6 | 常规晚籼 Conventional late indica rice | Gn1a-i | 27 | 吉粳 88 Jijing 88 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
8 | 中籼2503 Zhongxian 2503 | 常规晚籼 Conventional late indica rice | Gn1a-i | 28 | 盐丰 47 Yanfeng 47 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
9 | 湘晚籼3号 Xiangwanxian 3 | 常规晚籼 Conventional late indica rice | Gn1a-i | 29 | 空育131 Kongyu 131 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
10 | 天丰B Tianfeng B | 三系保持系 Three-line maintainer line | Gn1a-i | 30 | 大量稻 Daliangdao | 农家品种 Farmhouse variety | Gn1a-j | ||
11 | II 32B | 三系保持系 Three-line maintainer line | Gn1a-i | 31 | 鸡吓稻 Jixiadao | 农家品种 Farmhouse variety | Gn1a-j | ||
12 | 协青早B Xieqingzao B | 三系保持系 Three-line maintainer line | Gn1a-i | 32 | 黑嘴稻 Heizuidao | 农家品种 Farmhouse variety | Gn1a-j | ||
13 | ZS97B | 三系保持系 Three-line maintainer line | Gn1a-i | 33 | 木樨球 Muxiqiu | 农家品种 Farmhouse variety | Gn1a-j | ||
14 | 贡877S Gong 877S | 两系不育系 Two-line male sterile line | Gn1a-i | 34 | 贩牛种 Fanniuzhong | 农家品种 Farmhouse variety | Gn1a-j | ||
15 | 中0S Zhong 0S | 两系不育系 Two-line male sterile line | Gn1a-i | 35 | 麦节青 Maijieqing | 农家品种 Farmhouse variety | Gn1a-j | ||
16 | 武香S Wuxiang S | 两系不育系 Two-line male sterile line | Gn1a-i | 36 | 茶陵野生稻 Chaling wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
17 | C815S | 两系不育系 Two-line male sterile line | Gn1a-i | 37 | 广西野生稻 Guangxi wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
18 | 华占 Huazhan | 三系恢复系 Three-line restorer line | Gn1a-i | 38 | 东乡野生稻 Dongxiang wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
19 | R173 | 三系恢复系 Three-line restorer line | Gn1a-i | 39 | 长雄野生稻 Oryza longistaminata | 长雄野生稻 Oryza longistaminata | Gn1a-j | ||
20 | 绵恢725 Mianhui 725 | 三系恢复系 Three-line restorer line | Gn1a-i |
表2 39份水稻材料的Gn1a等位基因分型
Table 2. Gn1a allele typing of 39 rice materials
序号 No. | 品种名称 Variety | 类型 Type | 等位基因 Allele | 序号 No. | 品种名称 Variety | 类型 Type | 等位基因 Allele | ||
---|---|---|---|---|---|---|---|---|---|
1 | 吉资1560 Jizi 1560 | 供体亲本 Donor parent | Gn1a-j | 21 | 明恢 63 Minghui 63 | 三系恢复系 Three-line restorer line | Gn1a-i | ||
2 | 中早39 Zhongzao 39 | 常规早籼 Conventional early indica rice | Gn1a-i | 22 | 南粳 44 Nanjing 44 | 南方粳稻 Southern japonica rice | Gn1a-i | ||
3 | 中嘉早17 Zhongjiazao 17 | 常规早籼 Conventional early indica rice | Gn1a-i | 23 | 镇稻 88 Zhendao 88 | 南方粳稻 Southern japonica rice | Gn1a-i | ||
4 | 中鉴100 Zhongjian 100 | 常规早籼 Conventional early indica rice | Gn1a-i | 24 | 浙禾香 2 号 Zhehexiang 2 | 南方粳稻 Southern japonica rice | Gn1a-j | ||
5 | 舟903 Zhou 903 | 常规早籼 Conventional early indica rice | Gn1a-i | 25 | 春江糯 6 号 Chunjiangnuo 6 | 南方粳稻 Southern japonica rice | Gn1a-j | ||
6 | 黄华占 Huanghuazhan | 常规晚籼 Conventional late indica rice | Gn1a-i | 26 | 沈农 265 Shennong 265 | 北方粳稻 Northern japonica rice | Gn1a-j | ||
7 | 扬稻6号 Yangdao 6 | 常规晚籼 Conventional late indica rice | Gn1a-i | 27 | 吉粳 88 Jijing 88 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
8 | 中籼2503 Zhongxian 2503 | 常规晚籼 Conventional late indica rice | Gn1a-i | 28 | 盐丰 47 Yanfeng 47 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
9 | 湘晚籼3号 Xiangwanxian 3 | 常规晚籼 Conventional late indica rice | Gn1a-i | 29 | 空育131 Kongyu 131 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
10 | 天丰B Tianfeng B | 三系保持系 Three-line maintainer line | Gn1a-i | 30 | 大量稻 Daliangdao | 农家品种 Farmhouse variety | Gn1a-j | ||
11 | II 32B | 三系保持系 Three-line maintainer line | Gn1a-i | 31 | 鸡吓稻 Jixiadao | 农家品种 Farmhouse variety | Gn1a-j | ||
12 | 协青早B Xieqingzao B | 三系保持系 Three-line maintainer line | Gn1a-i | 32 | 黑嘴稻 Heizuidao | 农家品种 Farmhouse variety | Gn1a-j | ||
13 | ZS97B | 三系保持系 Three-line maintainer line | Gn1a-i | 33 | 木樨球 Muxiqiu | 农家品种 Farmhouse variety | Gn1a-j | ||
14 | 贡877S Gong 877S | 两系不育系 Two-line male sterile line | Gn1a-i | 34 | 贩牛种 Fanniuzhong | 农家品种 Farmhouse variety | Gn1a-j | ||
15 | 中0S Zhong 0S | 两系不育系 Two-line male sterile line | Gn1a-i | 35 | 麦节青 Maijieqing | 农家品种 Farmhouse variety | Gn1a-j | ||
16 | 武香S Wuxiang S | 两系不育系 Two-line male sterile line | Gn1a-i | 36 | 茶陵野生稻 Chaling wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
17 | C815S | 两系不育系 Two-line male sterile line | Gn1a-i | 37 | 广西野生稻 Guangxi wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
18 | 华占 Huazhan | 三系恢复系 Three-line restorer line | Gn1a-i | 38 | 东乡野生稻 Dongxiang wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
19 | R173 | 三系恢复系 Three-line restorer line | Gn1a-i | 39 | 长雄野生稻 Oryza longistaminata | 长雄野生稻 Oryza longistaminata | Gn1a-j | ||
20 | 绵恢725 Mianhui 725 | 三系恢复系 Three-line restorer line | Gn1a-i |
图5 Gn1a等位基因分型 A: 9种类型39个水稻材料的Gn1a等位基因分型;M:DNA分子量标记;泳道1~39分别代表39份品种,与表2序号对应;B:Rice SNP-Seek数据库3000份水稻材料的单倍型分析。
Fig. 5. Gn1a allele haplotype A, Gn1a allele typing of 39 rice materials of 9 types; M, DNA marker; Lanes 1-39 represent 39 varieties respectively, corresponding to the serial number of Table 2; B, Haplotype analysis of 3000 rice materials in Rice SNP-Seek Database.
[1] | Sreenivasulu N, Pasion E, Kohli A. Idealizing inflorescence architecture to enhance rice yield potential for feeding nine billion people in 2050[J]. Molecular Plant, 2021, 14(6): 861-863. |
[2] | Wu X H, Liang Y L, Gao H, Feng Y T, Yang J J, Li M, Wang Y, Qin P, Sun X M, Li Z C. Enhancing rice grain production by manipulating the naturally evolved cis-regulatory element-containing inverted repeat sequence of OsREM20[J]. Molecular Plant, 2021, 14(6): 997-1011. |
[3] | Li G L, Zhang H L, Li J J, Zhang Z Y, Li Z C. Genetic control of panicle architecture in rice[J]. The Crop Journal, 2021, 9(3): 590-597. |
[4] | 马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展[J]. 中国农学通报, 2020, 36(29): 1-6. |
Ma M Y, Gong W L, Kang X M, Duan H Y. The improvement of ideal plant type of rice: A review[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 1-6. (in Chinese with English abstract) | |
[5] | Lu Y, Chuan M, Wang H, Lu Y, Chuan M L, Wang H Y, Chen R J, Tao T Y, Zhou Y, Xu Y, Li P C, Yao Y L, Xu C W, Yang Z F. Genetic and molecular factors in determining grain number per panicle of rice[J]. Frontiers in Plant Science, 2022, 13: 964246. |
[6] | Shaw B P, Sekhar S, Panda B B, Sahu G, Chandra T, Parida A K. Genes determining panicle morphology and grain quality in rice[J]. Functional Plant Biology, 2022, 49(8): 673-688. |
[7] | Duan E C, Wang Y H, Li X H, Lin Q B, Zhang T, Wang Y P, Zhou C L, Zhang H, Jiang L, Wang J L, Lei C L, Zhang X. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice[J]. Plant Cell, 2019, 31(5): 1026-1042. |
[8] | Ta K N, Khong N G, Ha T L, Nguyen D T, Mai D C, Hoang T G, Phung T P N, Bourrie I, Courtois B, Tran T T H, Dinh B Y, La T N, Do N V, Lebrun M, Gantet P, Jouannic S. A genome-wide association study using a Vietnamese landrace panel of rice (Oryza sativa) reveals new QTLs controlling panicle morphological traits[J]. BMC Plant Biology, 2018, 18(1): 282. |
[9] | Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture[J]. Frontiers in Plant Science, 2022, 13: 1010138. |
[10] | Deveshwar P, Prusty A, Sharma S, Tyagi A K. Phytohormone-mediated molecular mechanisms involving multiple genes and QTL govern grain number in rice[J]. Frontiers in Genetics, 2020, 11: 586462. |
[11] | Hu Q Q, Wang W C, Lu Q F, Huang J L, Peng S B, Cui K H. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage[J]. BMC Plant Biology, 2021, 21(1): 428. |
[12] | Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18(12): 1199-1209. |
[13] | Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745. |
[14] | Yan C J, Yan S, Yang Y C, Zeng X H, Fang Y W, Zeng S Y, Tian C Y, Sun Y W, Tang S Z, Gu M H. Development of gene-tagged markers for quantitative trait loci underlying rice yield components[J]. Euphytica, 2009, 169(2): 215-226. |
[15] | Wang J, Xu H X, Li N W, Fan F F, Wang L T, Zhu Y G, Li S Q. Artificial selection of Gn1a plays an important role in improving rice yields across different ecological regions[J]. Rice(NY), 2015, 8(1): 37. |
[16] | Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497. |
[17] | Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767. |
[18] | Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, 42(6): 545-549. |
[19] | Komatsu M, Maekawa M, Shimamoto K, Kyozuka J. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development[J]. Developmental Biology, 2001, 231(2): 364-373. |
[20] | Zhang Z Y, Li J J, Yao G X, Zhang H L, Dou H J, Shi H L, Sun X M, Li Z C. Fine mapping and cloning of the grain number per-panicle gene (Gnp4) on chromosome 4 in rice (Oryza sativa L.)[J]. Agricultural Sciences in China, 2011, 10(12): 1825-1833. |
[21] | Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate[J]. The Plant Journal, 2007, 51(6): 1030-1040. |
[22] | Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J I, Nagato Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1[J]. The Plant Journal, 2012, 69(1): 168-180. |
[23] | Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice[J]. Plant Molecular Biology, 2004, 55(5): 687-700. |
[24] | Huo X, Wu S, Zhu Z F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q. NOG1 increases grain production in rice[J]. Nature Communications, 2017, 8(1): 1497. |
[25] | Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature, 2007, 445(7128): 652-655. |
[26] | Guo T, Lu Z Q, Shan J X, Ye W W, Dong N Q, Lin H X. ERECTA1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice[J]. The Plant Cell, 2020, 32(9): 2763-2779. |
[27] | Wang H M, Tong X H, Tang L Q, Wang Y F, Zhao J, Li Z Y, Liu X X, Shu Y Z, Yin M, Adegoke T V, Liu W N, Wang S, Xu H Y, Ying J Z, Yuan W Y, Yao J L, Zhang J. RLB (RICE LATERAL BRANCH) recruits PRC2-mediated H3K27 tri-methylation on OsCKX4 to regulate lateral branching[J]. Plant Physiology, 2022, 188(1): 460-476. |
[28] | Li S Y, Zhao B R, Yuan D Y, Duan M J, Qian Q, Tang L, Wang B, Liu X Q, Zhang J, Wang J, Sun J Q, Liu Z. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 3167-3172. |
[29] | 唐志明, 马荣荣, 王晓燕, 陆永法, 周华成, 蔡克峰. 甬优系列籼粳杂交组合产量优势与亲本籼粳成分及农艺性状间的关系研究[J]. 杂交水稻, 2021, 36(5): 65-72. |
Tang Z M, Ma R R, Wang X Y, Lu Y F, Zhou H C, Cai K F. Relationship of yield heterosis of Yongyou series of indica-japonica hybrid combinations to the genetic distance and agronomical traits of parents[J]. Hybrid Rice, 2021, 36(5): 65-72. (in Chinese with English abstract) | |
[30] | 陈名红, 李玉, 刘多, 佘鑫, 熊华斌, 李成云. 利用改良CTAB法提取卷丹百合鳞叶基因组DNA[J]. 江苏农业科学, 2013, 41(3): 27-29. |
Chen M H, Li Y, Liu D, She X, Xiong H B, Li C Y. Extraction of genomic DNA from the scaly leaves of Lilium lancifolium Thunb. using an improved CTAB method[J]. Jiangsu Agricultural Sciences, 2013, 41(3): 27-29. (in Chinese) | |
[31] | Huang J P, Chen Z M, Lin J J, Guan B B, Chen J W, Zhang Z S, Chen F Y, Jiang L R, Zheng J S, Wang T S, Chen H Q, Xie W Y. gw2.1, a new allele of GW2, improves grain weight and grain yield in rice[J]. Plant Science, 2022, 325: 111495. |
[32] | Fujino K, Yamanouchi U. Genetic effect of a new allele for the flowering time locus Ghd7 in rice[J]. Breeding Science, 2020, 70(3): 342-346. |
[33] | Sun J, Liu D, Wang J Y, Ma D R, Tang L, Gao H, Xu Z J. The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China[J]. Theoretical and Applied Genetics, 2012, 125(6): 1149-1157. |
[34] | Feng X M, Wang C, Nan J Z, Zhang X H, Wang R S, Jiang G Q, Yuan Q B, Lin S Y. Updating the elite rice variety Kongyu 131 by improving the Gn1a locus[J]. Rice, 2017, 10(1): 35. |
[35] | 温一博, 陈淑婷, 徐正进, 孙健, 徐铨. DEP1、Gn1a和qSW5组合应用调控水稻穗部性状[J]. 中国农业科学, 2023, 56(7): 1218-1227. |
Wen Y B, Chen S T, Xu Z J, Sun J, Xu Q. Combination of DEP1, Gn1a, and qSW5 regulates the panicle architecture in rice[J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227. (in Chinese with English abstract) | |
[36] | 沈兰, 李健, 付亚萍, 王俊杰, 华宇峰, 焦晓真, 严长杰, 王克剑. 利用CRISPR/Cas9系统定向改良水稻粒长和穗粒数性状[J]. 中国水稻科学, 2017, 31(3): 223-231. |
Shen L, Li J, Fu Y P, Wang J J, Hua Y F, Jiao X Z, Yan C J, Wang K J. Orientation improvement of grain length and grain number in rice by using CRISPR/Cas9 system[J]. Chinese Journal of Rice Science, 2017, 31(3): 223-231. (in Chinese with English abstract) |
[1] | 陈智慧, 陶亚军, 范方军, 许扬, 王芳权, 李文奇, 古丽娜尔·巴合提别克, 蒋彦婕, 朱建平, 李霞, 杨杰. 水稻抽穗期调控基因Hd6功能标记的开发及应用[J]. 中国水稻科学, 2025, 39(1): 47-54. |
[2] | 冯爱卿, 汪聪颖, 苏菁, 封金奇, 陈凯玲, 林晓鹏, 陈炳, 梁美玲, 杨健源, 朱小源, 陈深. 水稻细菌性条斑病抗性新品系的创制及其农艺性状分析[J]. 中国水稻科学, 2023, 37(6): 587-596. |
[3] | 程玲, 黄福钢, 邱一埔, 王心怡, 舒宛, 邱永福, 李发活. 籼稻材料570011抗褐飞虱基因的遗传分析及鉴定[J]. 中国水稻科学, 2023, 37(3): 244-252. |
[4] | 王石光, 陆展华, 刘维, 卢东柏, 王晓飞, 方志强, 巫浩翔, 何秀英. 应用CRISPR/Cas9技术与分子标记辅助选择创制广东丝苗米新种质[J]. 中国水稻科学, 2023, 37(1): 29-36. |
[5] | 陈涛, 赵庆勇, 朱镇, 赵凌, 姚姝, 周丽慧, 赵春芳, 张亚东, 王才林. 利用分子标记辅助选择培育优良食味、低谷蛋白香粳稻新品系[J]. 中国水稻科学, 2023, 37(1): 55-65. |
[6] | 董铮, 王雅美, 黎用朝, 熊海波, 薛灿辉, 潘孝武, 刘文强, 魏秀彩, 李小湘. 基于MAGIC群体的水稻镉含量全基因组关联分析[J]. 中国水稻科学, 2022, 36(1): 35-42. |
[7] | 姚姝, 张亚东, 刘燕清, 赵春芳, 周丽慧, 陈涛, 赵庆勇, 朱镇, Balakrishna PILLAY, 王才林. Wxmp基因背景下可溶性淀粉合成酶基因SSⅡa和去分支酶基因PUL对水稻蒸煮食味品质的影响[J]. 中国水稻科学, 2020, 34(3): 217-227. |
[8] | 陈专专, 杨勇, 冯琳皓, 孙晔, 张昌泉, 范晓磊, 李钱峰, 刘巧泉. Wx与ALK主要等位基因不同组合对稻米品质的影响[J]. 中国水稻科学, 2020, 34(3): 228-236. |
[9] | 陈涛, 孙旭超, 张善磊, 梁文化, 周丽慧, 赵庆勇, 姚姝, 赵凌, 赵春芳, 朱镇, 张亚东, 王才林. 稻瘟病广谱抗性基因Pigm特异性分子标记的开发和应用[J]. 中国水稻科学, 2020, 34(1): 28-36. |
[10] | 陈专专, 李先锋, 仲敏, 葛家奇, 范晓磊, 张昌泉, 刘巧泉. 籼稻背景下抑制不同ALK等位基因表达对稻米品质的影响[J]. 中国水稻科学, 2019, 33(6): 513-522. |
[11] | 朱安东, 孙志超, 朱玉君, 张荟, 牛小军, 樊叶杨, 张振华, 庄杰云. 应用剩余杂合体衍生群体定位水稻粒重粒形QTL[J]. 中国水稻科学, 2019, 33(2): 144-151. |
[12] | 张宏根, 仲崇元, 司华, 刘巧泉, 顾铭洪, 汤述翥. 分子标记辅助选择改良C418对红莲型粳稻不育系的恢复力[J]. 中国水稻科学, 2018, 32(5): 445-452. |
[13] | 井文, 章文华. 水稻耐盐基因定位与克隆及品种耐盐性分子标记辅助选择改良研究进展[J]. 中国水稻科学, 2017, 31(2): 111-123. |
[14] | 李威, 圣忠华, 朱子亮, 魏祥进, 石磊, 邬亚文, 唐绍清, 王建龙, 胡培松. 粳稻柱头外露率QTL定位[J]. 中国水稻科学, 2017, 31(1): 23-30. |
[15] | 华丽霞, 汪文娟, 陈深, 汪聪颖, 曾烈先, 杨健源, 朱小源, 苏菁. 抗稻瘟病Pi2/9/z-t基因特异性分子标记的开发[J]. 中国水稻科学, 2015, 29(4): 305-310. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||