[1] 李文枫, 毕洪文, 黄峰华, 李晓晨, 李金霞, 张妍, 刘艳霞. 黑龙江省水稻产业发展现状及展望[J]. 农业展望, 2020, 16 (12): 48-53+64.
Li W F, Bi H W, Huang F H, Li X C, Li J X, Zhang Y, Liu Y X. Current Status and Prospects of Rice Industry Development in Heilongjiang Province[J]. Agricultural Outlook, 2020, 16 (12): 48-53+64. (in Chinese)
[2] 国家统计局. 中国统计年鉴[M]. 北京:中国统计出版社, 2021.
National Bureau of Statistics. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2021. (in Chinese)
[3] 马建勇, 许吟隆, 潘婕. 东北地区农业气象灾害的趋势变化及其对粮食产量的影响[J]. 中国农业气象, 2012, 33(2): 283-288.
Ma J Y, Xu Y L, Pan J. Trend changes in agricultural meteorological disasters in Northeast China and their impact on grain output[J]. Chinese Journal of Agrometeorology, 2012, 33(2): 283-288. (in Chinese with English abstract)
[4] Liu Z X, Deng H B. Development of genetic and QTLs analysis for cold tolerance in rice[J]. Chinese Agricultural Science Bulletin, 2009, 25: 45-50.
[5] Erdal S. Androsterone-induced molecular and physiological changes in maize seedlings in response to chilling stress[J]. Plant Physiology and Biochemistry, 2012, 57: 1-7.
[6] Li J H, Zhang Z Y, Chong K, Xu Y Y. Chilling tolerance in rice: Past and present[J]. Journal of Plant Physiology, 2022, 268: 153576.
[7] Li J L, Pan Y H, Guo H F, Zhou L, Yang S M, Zhang Z Y, Yang J Z, Zhang H L, Li J J, Zeng Y W, Li Z C. Fine mapping of QTL qCTB10-2 that confers cold tolerance at the booting stage in rice[J]. Theoretical and Applied Genetics, 2018, 131: 157-166.
[8] 随晶晶, 赵桂龙, 金欣, 卜庆云, 唐佳琦. 水稻孕穗期耐冷调控的分子及生理机制研究进展[J/OL]. 中国水稻科学, 2025, 39(1): 1-10.
Sui J J, Zhao G L, Jin X, Bu Q Y, Tang J Q. Advances in molecular and physiological mechanisms of cold tolerance regulation of rice at the booting stage[J/OL]. Chinese Journal of Rice Science, 2025, 39(1): 1-10. (in Chinese with English abstract)
[9] 韦云飞, 白璐嘉, 宋晓叶, 肖晓荣, 马启林. 基于水稻幼穗盐胁迫响应转录组的MYB基因分析及耐盐基因挖掘[J]. 分子植物育种, 2023, 21(2): 360-369.
Wei Y F, Bai L J, Song X Y, Xiao X R, Ma Q L. Transcriptome analysis of MYB based on salt stress response in young rice panicles and mining of salt tolerance genes[J]. Molecular Plant Breeding, 2023, 21(2): 360-369. (in Chinese with English abstract)
[10] 郭震华, 马文东, 蔡丽君, 蔡永盛, 胡月婷, 韩笑, 田崇兵, 张希瑞, 王翠. 基于转录组测序的寒地水稻孕穗期低温响应分析[J/OL]. 江苏农业科学, 2024, 52(19): 34-40.
Guo Z H, Ma W D, Cai L J, Cai Y S, Hu Y T, Han X, Tian C B, Zhang X R, Wang C. Analysis of low temperature response during the booting stage of cold region rice based on transcriptome sequencing[J/OL]. Jiangsu Agricultural Sciences, 2024, 52(19): 34-40. (in Chinese with English abstract)
[11] 郭慧, 李树杏, 甘雨, 张宏伟, 郝留根, 杨占烈, 向关伦, 王珍珍, 易崇粉. 水稻幼苗期低温胁迫的生理响应及转录组分析[J]. 西南农业学报, 2023, 36(10): 2116-2125.
Guo H, Li S X, Gan Y, Zhang H W, Hao L G, Yang Z L, Xiang G L, Wang Z Z, Yi C F. Transcriptome analysis and physiological response to low temperature stress at rice seedling stage[J]. Southwest China Journal of Agricultural Sciences, 2023, 36(10): 2116-2125. (in Chinese with English abstract)
[12] 邓伟, 吕莹, 董阳均, 徐雨然, 杨华涛, 张锦文, 张建华, 奎丽梅, 涂建, 相罕章, 管俊娇, 董维, 谷安宇, 安华, 杨丽萍, 张笑, 李小林. 云南水稻种质资源的遗传多样性分析[J]. 植物遗传资源学报, 2023, 24(3): 624-635.
Deng W, Lü Y, Dong Y J, Xu Y R, Yang H T, Zhang J W, Zhang J H, Kui L M, Tu J, Xiang H Z, Guan J J, Dong W, Gu A Y, An H, Yang L P, Zhang X, Li X L. The genetic diversity analysis of rice germplasm resources in Yunnan Province of China[J]. Journal of Plant Genetic Resources, 2023, 24(3): 624-635. (in Chinese with English abstract)
[13] Khairy A I H, Oh M J, Lee S M, Kim D S, Roh K S. Nitric oxide overcomes Cd and Cu toxicity in in vitro-grown tobacco plants through increasing contents and activities of rubisco and rubisco activase[J]. Biochimie Open, 2016, 2: 41-51
[14] 童启庆, 须海荣. 茶叶中乙醇酸氧化酶活性测定[J]. 中国茶叶, 1990(3): 14-15.
Tong Q Q, Xu H R. Determination of glycolate oxidase activity in tea[J]. China Tea, 1990(3): 14-15. (in Chinese)
[15] Coyne K J, Wang Y, Wood S A, Countway P D, Greenlee S M. Current applications and technological advances in quantitative real-time PCR (qPCR): A versatile tool for the study of phytoplankton ecology[J]. Advances in Phytoplankton Ecology, 2022, 303-351.
[16] Zhao J, Zhang S, Yang T, Zeng Z, Huang Z, Liu Q, Wang X, Leach J, Leung H, Liu B. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms[J]. Physiologia Plantarum, 2015, 154(3): 381-394.
[17] 王连敏, 王立志, 李忠杰, 李锐, 王春艳, 刘功, 中本和夫. 黑龙江省水稻品种耐寒能力评价[C]//中国作物学会栽培专业委员会换届暨学术研讨会论文集. 哈尔滨: 黑龙江省农业科学院耕作栽培所, 2007: 104-110.
Wang L M, Wang L Z, Li Z J, Li R, Wang C Y, Liu G. Evaluation on summer cooling injury tolerance of rice varieties in Heilongjiang Province[C]//Proceedings of the Chinese Crop Society Cultivation Professional Committee Election and Academic Seminar. Harbin: Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences, 2007: 104-110.
[18] Shimono H, Hasegawa T, Fujimura S, Iwama K. Responses of leaf photosynthesis and plant water status in rice to low water temperature at different growth stages[J]. Field Crops Research, 2004, 89(1): 71-83.
[19] Ariizumi T, Kishitani S, Inatsugi R, Nishida I, Murata N, Toriyama K. An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings[J]. Plant & Cell Physiology, 2002, 43(7): 751-758.
[20] Ben Yahmed J, de Oliveira T M, Novillo P, Quinones A, Forner M A, Salvador A, Froelicher Y, Ben Mimoun M, Talon M, Ollitrault P, Morillon R. A simple, fast and inexpensive method to assess salt stress tolerance of aerial plant part: Investigations in the mandarin group[J]. Journal of Plant Physiology, 2016, 190: 36-43.
[21] Jeong S W, Choi S M, Lee D S, Ahn S N, Hur Y, Soon Chow W, Park Y I. Differential susceptibility of photosynthesis to light-chilling stress in rice (Oryza sativa L.) depends on the capacity for photochemical dissipation of light[J]. Molecules and Cells, 2002, 13(3): 419-428.
[22] 蔡金桓, 薛立. 高山植物的光合生理特性研究进展[J]. 生态学杂志, 2018, 37(1): 245-254.
Cai J H, Xue L. Advances on photosynthesis characteristics of alpine plants[J]. Chinese Journal of Ecology, 2018, 37(1): 245-254.
[23] Mukherjee S P, Choudhuri M A. Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings[J]. Physiologia Plantarum, 1983, 58(2): 166-170.
[24] Mittler R, Zilinskas B A. Regulation of pea cytosolic ascorbate peroxidase and other antioxidant enzymes during the progression of drought stress and following recovery from drought[J]. The Plant Journal, 1994, 5(3): 397-405.
[25] Rizhsky L, Liang H, Mittler R. The combined effect of drought stress and heat shock on gene expression in tobacco[J]. Plant Physiology, 2002, 130(3): 1143-1151.
[26] Pant B D, Oh S, Lee H K, Nandety R S, Mysore K S. Antagonistic Regulation by CPN60A and CLPC1 of TRXL1 that regulates MDH activity leading to plant disease resistance and thermotolerance[J]. Cell Reports, 2020, 33(11): 108512.
[27] Salesse-Smith C E, Sharwood R E, Busch F A, Stern D B. Increased Rubisco content in maize mitigates chilling stress and speeds recovery[J]. Plant Biotechnology Journal, 2020, 18: 1409-1420. |