Chinese Journal OF Rice Science ›› 2022, Vol. 36 ›› Issue (5): 543-550.DOI: 10.16819/j.1001-7216.2022.210811
• Research Papers • Previous Articles
ZENG Wenjing, QIU Lanying, CHEN Junjie, QIAN Haoyu, ZHANG Nan, DING Yanfeng, JIANG Yu()
Received:
2021-08-19
Revised:
2022-03-06
Online:
2022-09-10
Published:
2022-09-09
Contact:
JIANG Yu
曾文静, 邱岚英, 陈俊杰, 钱浩宇, 张楠, 丁艳锋, 江瑜()
通讯作者:
江瑜
基金资助:
ZENG Wenjing, QIU Lanying, CHEN Junjie, QIAN Haoyu, ZHANG Nan, DING Yanfeng, JIANG Yu. Effect of Elevated CO2 Concentration on Rice Growth and CH4 Emission from Paddy Fields Under Straw Incorporation[J]. Chinese Journal OF Rice Science, 2022, 36(5): 543-550.
曾文静, 邱岚英, 陈俊杰, 钱浩宇, 张楠, 丁艳锋, 江瑜. 秸秆还田下大气CO2浓度升高对水稻生长和CH4排放的影响[J]. 中国水稻科学, 2022, 36(5): 543-550.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2022.210811
处理 Treatment | 株高 Plant height/cm | 叶面积系数 Leaf area index | 地上部生物量 Aboveground biomass/(g·m−2) | |
---|---|---|---|---|
剑叶 Flag leaf | 倒2叶 Second leaf | |||
aCO2 | 102.3 ± 0.8 a | 0.8 ± 0.0 a | 0.9 ± 0.1 a | 2067.8 ± 62.6 a |
eCO2 | 104.0 ± 0.7 a | 1.0 ± 0.0 b | 1.1 ± 0.1 b | 2523.3 ± 105.1 b |
Table 1. Effects of elevated atmospheric CO2 concentration on rice plant height, leaf area and biomass.
处理 Treatment | 株高 Plant height/cm | 叶面积系数 Leaf area index | 地上部生物量 Aboveground biomass/(g·m−2) | |
---|---|---|---|---|
剑叶 Flag leaf | 倒2叶 Second leaf | |||
aCO2 | 102.3 ± 0.8 a | 0.8 ± 0.0 a | 0.9 ± 0.1 a | 2067.8 ± 62.6 a |
eCO2 | 104.0 ± 0.7 a | 1.0 ± 0.0 b | 1.1 ± 0.1 b | 2523.3 ± 105.1 b |
处理 Treatment | 每平方米穗数 Panicle number per square meter | 每穗粒数 Spikelet number per panicle | 结实率 Seed-setting rate /% | 千粒重 1000-grain weight /g | 产量 Yield /(g·m−2) |
---|---|---|---|---|---|
aCO2 | 232.0 ± 7.2 a | 203.7 ± 6.1 a | 69.6 ± 0.6 a | 23.4 ± 0.1 a | 846.4 ± 34.1 a |
eCO2 | 276.0 ± 9.2 b | 205.1 ± 8.6 a | 74.2 ± 1.1 b | 24.1 ± 0.2 b | 1092.0 ± 56.1 b |
Table 2. Effects of elevated atmospheric CO2 concentration on yield and its components.
处理 Treatment | 每平方米穗数 Panicle number per square meter | 每穗粒数 Spikelet number per panicle | 结实率 Seed-setting rate /% | 千粒重 1000-grain weight /g | 产量 Yield /(g·m−2) |
---|---|---|---|---|---|
aCO2 | 232.0 ± 7.2 a | 203.7 ± 6.1 a | 69.6 ± 0.6 a | 23.4 ± 0.1 a | 846.4 ± 34.1 a |
eCO2 | 276.0 ± 9.2 b | 205.1 ± 8.6 a | 74.2 ± 1.1 b | 24.1 ± 0.2 b | 1092.0 ± 56.1 b |
Fig. 1. Effects of elevated atmospheric CO2 concentration on CH4 emission dynamics. Error bars represent standard errors(n=6). The same as in the figures below.
[1] | FAO (Food and Agriculture Organization of the United Nations). FAOSTAT-Food and agriculture data[EB/OL]. 2021. http://www.fao.org/faostat/zh/#data/QC. |
[2] | IRRI (International Rice Research Institute). Rice Today: Yield increase prospects for rice to 2050[EB/OL] // Fischer T. 2014. https://ricetoday.irri.org/yield-increase-prospects-for-rice-to-2050. |
[3] | IPCC (Intergovernmental Panel on Climate Change). Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. Working group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change. //Stocker T F. Climate Change 2013: The Physical Science Basis[R]. Cambridge, UK, and New York, NY: Cambridge University Press, 2013: 95-123. |
[4] | Yan X Y, Akiyama H, Yagi K, Akimoto H. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines[J]. Global Biogeochemical Cycles, 2009, 23: GB2002. |
[5] | 李彦生, 金剑, 刘晓冰. 作物对大气CO2浓度升高生理响应研究进展[J]. 作物学报, 2020, 46(12): 1819-1830. |
Li Y S, Jin J, Liu X B. Research progress on physiological responses of crops to elevated atmospheric CO2 concentration[J]. Acta Agronomica Sinica, 2020, 46(12): 1819-1830. (in Chinese with English abstract) | |
[6] | Zhu C W, Zhu J G, Cao J, Jiang Q, Liu G, Ziska L H. Biochemical and molecular characteristics of leaf photosynthesis and relative seed yield of two contrasting rice cultivars in response to elevated [CO2][J]. Journal of Experimental Botany, 2014, 65(20): 6049-6056. |
[7] | van Groenigen K J, Kessel C, Hungate B A. Increased greenhouse-gas intensity of rice production under future atmospheric conditions[J]. Nature Climate Change, 2013, 3: 288-291. |
[8] | 张坚超, 徐镱钦, 陆雅海. 陆地生态系统甲烷产生和氧化过程的微生物机理[J]. 生态学报 2015, 35(20): 6592-6603. |
Zhang J C, Xu Y Q, Lu Y H. Microbial mechanisms of methane production and oxidation in terrestrial ecosystems[J]. Acta Ecologica Sinica, 2015, 35 (20): 6592-6603. | |
[9] | van Groenigen K J, Osenberg C W, Hungate B A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2[J]. Nature, 2011, 475: 214-216. |
[10] | 蔡祖聪, 徐华, 马静. 稻田生态系统CH4和N2O排放[M]. 合肥: 中国科学技术大学出版社, 2009: 136-140. |
Cai Z C, Xu H, Ma J. CH4 and N2O emissions from paddy ecosystem[M]. Hefei: University of Science and Technology of China Press, 2009: 136-140. (in Chinese) | |
[11] | 田婷, 张青, 蒋华伟, 靖晶, 姜红卫, 李欣, 江君, 徐君. 水稻植株对稻田甲烷排放影响的研究进展[J]. 江苏农业科学, 2017, 45(20): 28-31. |
Tian T, Zhang Q, Jiang H W, Jing J, Jiang H W, Li X, Jiang J, Xu J. Research progress on effects of rice plants on methane emission from paddy fields[J]. Jiangsu Agricultural Sciences, 2017, 45(20): 28-31. (in Chinese with English abstract) | |
[12] | Liu G C, Tokida T, Matsunami T, Nakamura H, Okada M, Sameshima R, Hasegawa T, Sugiyama S. Microbial community composition controls the effects of climate change on methane emission from rice paddies[J]. Environmental Microbiology Reports. 2012, 4(6): 648-54. |
[13] | Liu D Y, Tago K, Hayatsu M, Tokida T, Asakawa S. Effect of elevated CO2 concentration, elevated temperature and no nitrogen fertilization on methanogenic archaeal and methane-oxidizing bacterial community structures in paddy soil[J]. Microbes and Environments, 2016, 31(3): 349-356. |
[14] | Okubo T, Liu D Y, Tsurumaru H, Ikeda S, Asakawa S, Tokida T, Tago K, Hayatsu M, Aoki N, Ishimaru K, Ujiie K, Usui Y, Nakamura H, Sakai H, Hayashi K, Hasegawa T, Minamisawa K. Elevated atmospheric CO2 levels affect community structure of rice root-associated bacteria[J]. Frontiers in Microbiology, 2015, 6: 136. |
[15] | 钟平, 张超旭, 王丽, 王福成, 汪春. 秸秆资源综合利用研究[J]. 现代农业, 2020(6): 4-5. |
Zhong P, Zhang C X, Wang L, Wang F C, Wang C. Research on comprehensive utilization of straw resources[J]. Modern Agriculture, 2020(6): 4-5. (in Chinese with English abstract) | |
[16] | 张志才, 陈加银, 张永明. 丘陵地小麦秸秆全量还田对土壤肥力及水稻生长的影响[J]. 南方农业, 2021, 15(7): 43-46. |
Zhang Z C, Chen J Y, Zhang Y M. Effects of total wheat straw returning on soil fertility and rice growth in hilly land[J]. South China Agriculture, 2021, 15(7): 43-46. (in Chinese with English abstract) | |
[17] | 李凤博, 牛永志, 高文玲, 刘金根, 卞新民. 耕作方式和秸秆还田对直播稻田土壤理化性质及其产量的影响[J]. 土壤通报, 2008, 39(3): 549-552. |
Li F B, Niu Y Z, Gao W L, Liu J G, Bian X M. Effects of tillage and straw returning on soil physicochemical properties and yield in direct-seeding rice field[J]. Chinese Journal of Soil Science, 2008, 39(3): 549-552. (in Chinese with English abstract) | |
[18] | 陈云峰, 夏贤格, 杨利, 刘波, 张敏敏, 聂新星. 秸秆还田是秸秆资源化利用的现实途径[J]. 中国土壤与肥料, 2020(6): 300. |
Chen Y F, Xia X G, Yang L, Liu B, Zhang M M, Nie X X. Straw returning to field is a realistic approach to straw resource utilization[J]. Soil and Fertilizer Science in China, 2020(6): 300. (in Chinese with English abstract) | |
[19] | Liu C, Lu M, Cui J, Li B, Fang C M. Effects of straw carbon input on carbon dynamics in agricultural soils: a meta-analysis[J]. Global Change Biology, 2014, 20(5): 1366-1381. |
[20] | Jiang Y, Qian H Y, Huang S, Zhang X Y, Wang L, Zhang L, Shen M X, Xiao X P, Chen F, Zhang H L, Lu C Y, Li C, Zhang J, Deng A X, van Groenigen K J, Zhang W J. Acclimation of methane emissions from rice paddy fields to straw addition[J]. Science Advances, 2019, 5: eaau9038 |
[21] | Hu S W, Wang Y X, Yang L X. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies[J]. Science of the Total Environment, 2021, 764: 142797. |
[22] | 陈改苹, 朱建国, 庞静, 程磊, 谢祖彬, 曾青. CO2浓度升高对水稻抽穗期根系有关性状及根碳氮比的影响[J]. 中国水稻科学, 2006, 20(1): 53-57. |
Chen G P, Zhu J G, Pang J, Cheng L, Xie Z B, Zeng Q. Effects of elevated CO2 concentration on root traits and root C/N ratio at heading stage of rice[J]. Chinese Journal of Rice Science, 2006, 20(1): 53-57. (in Chinese with English abstract) | |
[23] | 刘红江, 杨连新, 黄建晔, 董桂春, 朱建国, 刘钢, 王余龙. FACE对三系杂交籼稻汕优63根系生长动态的影响[J]. 农业环境科学学报, 2008, 27(6): 2291-2296. |
Liu H J, Yang L X, Huang J Y, Dong G C, Zhu J G, Liu G, Wang Y L. Effects of FACE on root growth dynamics of three-line indica hybrid rice Shanyou 63[J]. Journal of Agro-Environment Science, 2008, 27(6): 2291-2296. (in Chinese with English abstract) | |
[24] | Wu J J, Kronzucker H J, Shi W M. Dynamic analysis of the impact of free-air CO2 enrichment (FACE) on biomass and N uptake in two contrasting genotypes of rice[J]. Functional Plant Biology, 2018, 45(7): 696-704. |
[25] | Hasegawa T, Sakai H, Tokida T, Usui Y, Nakamura H, Wakatsuki H, Chen C P, Ikawa H, Zhang G, Nakano H. A high-yielding rice cultivar “Takanari” shows no N constraints on CO2 fertilization[J]. Frontiers in Plant Science, 2019, 10: 361. |
[26] | Cai C, Yin X Y, He S Q, Jiang W Y, Si C F, Struik P C, Luo W H, Li G, Xie Y T, Xiong Y, Pan G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments[J]. Global Change Biology, 2016, 22(2): 856-874. |
[27] | 刘红江, 杨连新, 黄建晔, 董桂春, 朱建国, 刘钢, 王余龙. FACE对杂交籼稻汕优63干物质生产与分配的影响[J]. 农业环境科学学报, 2009, 28(1): 8-14. |
Liu H J, Yang L X, Huang J Y, Dong G C, Zhu J G, Liu G, Wang Y L. Effects of FACE on dry matter production and distribution in indica hybrid rice Shanyou 63[J]. Journal of Agro-Environment Science, 2009, 28(1): 8-14. (in Chinese with English abstract) | |
[28] | Zhang G Y, Sakai H, Usui Y, Tokida T, Nakamurac H, Zhu C W, Fukuoka M, Kobayashi K, Hasegawa T. Grain growth of different rice cultivars under elevated CO2 concentrations affects yield and quality[J]. Field Crops Research, 2015, 179: 72-80. |
[29] | Zhang G Y, Sakai H, Tokida T, Usui Y, Zhu C W, Nakamura H, Yoshimoto M Fukuoka M, Kobayashi K, Hasegawa T. The effects of free-air CO2 enrichment (FACE) on carbon and nitrogen accumulation in grains of rice (Oryza sativa L.)[J]. Journal of Experimental Botany, 2013, 64(11): 3179-3188. |
[30] | Wang J Q, Liu X Y, Zhang X H, Smith P, Li L Q, Filley T R,. Cheng K, Shen M X, He Y B, Pan G X. Size and variability of crop productivity both impacted by CO2 enrichment and warming: A case study of 4 years field experiment in a Chinese paddy[J]. Agriculture, Ecosystems & Environment, 2016, 221: 40-49. |
[31] | Raj A, Chakrabarti B, Pathak H, Singh S D, Mina U, Purakayastha T J. Growth, yield and nitrogen uptake in rice crop grown under elevated carbon dioxide and different doses of nitrogen fertilizer[J]. Indian Journal of Experimental Biology, 2019, 57: 181-187. |
[32] | Hu S W, Wang Y X, Yang L X. Response of rice yield traits to elevated atmospheric CO2 concentration and its interaction with cultivar, nitrogen application rate and temperature: A meta-analysis of 20 years FACE studies[J]. Science of the Total Environment, 2021, 764: 142797. |
[33] | 周娟, 舒小伟, 赖上坤, 许高平, 黄建晔, 姚友礼, 杨连新, 董桂春, 王余龙. 不同类型水稻品种产量和氮素吸收利用对大气CO2浓度升高响应的差异[J]. 中国水稻科学, 2020, 34(6): 561-573. |
Zhou J, Shu X W, Lai S K, Xu G P, Huang J Y, Yao Y L, Yang L X, Dong G C, Wang Y L. Response of different rice varieties to elevated atmospheric CO2 concentration in response to yield and nitrogen uptake and utilization[J]. Chinese Journal of Rice Science, 2020, 34(6): 561-573. (in Chinese with English abstract) | |
[34] | Yang L X, Huang J Y, Yang H J, Dong G C, Liu H J, Liu G, Zhu J G, Wang Y L. Seasonal changes in the effects of free-air CO2 enrichment (FACE) nitrogen (N) uptake and utilization of rice at three levels of N fertilization[J]. Field Crops Research, 2007, 100: 189. |
[35] | 杨连新, 王余龙, 黄建晔, 杨洪建. 开放式空气 CO2 浓度增高对水稻生长发育影响的研究进展[J]. 应用生态学报, 2006, 17(7): 1333. |
Yang L X, Wang Y L, Huang J Y, Yang H J. Effects of elevated CO2 concentration in open air on rice growth and development[J]. Chinese Journal of Applied Ecology, 2006, 17(7): 1333. (in Chinese with English abstract) | |
[36] | Bai Z H, Li H G, Yang X Y, Zhou B K, Shi X J, Wang B, Li D C, Shen J B, Chen Q, Qin W, Oenema O, Zhang F. The critical soil P levels for crop yield, soil fertility and environmental safety in different soil types[J]. Plant and Soil, 2013, 372(1-2): 27-37. |
[37] | Turmel M S, Speratti A, Baudron F, Verhulst N, Govaerts B. Crop residue management and soil health: A systems analysis[J]. Agricultural Systems, 2015, 134(3): 6-16. |
[38] | Yang H J, Ma J X, Rong Z Y, Zeng D D, Wang Y C, Hu S J, Ye W W, Zheng X B. Wheat straw return influences nitrogen-cycling and pathogen associated soil microbiota in a wheat-soybean rotation system[J]. Frontiers in Microbiology, 2019(10): 1811-1825. |
[39] | Wang C, Jin Y G, Jia C, Zhang N, Song M Y, Kong D L, Liu S W, Zhang X H, Liu X Y, Zou J W, Lia S Q, Pan G X. An additive effect of elevated atmospheric CO2 and rising temperature on methane emissions related to methanogenic community in rice paddies[J]. Agriculture, Ecosystems and Environment, 2018, 257: 165-174. |
[40] | Zheng X H, Zhou Z X, Wang Y S, Zhu J G, Wang Y L, Yue J, Shi Y, Kobayashi K, Inubushi K, Huang Y, Han S H, Xu Z J, Xie B H, Butterbach-Bahl K, Yang L X. Nitrogen-regulated effects of free-air CO2enrichment on methane emissions from paddy rice fields[J]. Global Change Biology, 2006, 12: 1717-1732. |
[41] | Inubushi K, Cheng W G, Aonuma S, Hooue M M, Kobayashi K, Miura S, Kim H Y, Okadas M. Effects of free-air CO2 enrichment (FACE) on CH4 emission from a rice paddy field[J]. Global Change Biology, 2003, 9: 1458-1464. |
[42] | Qian H Y, Huang S, Chen J, Wang L, Hungate B A, van Kessel C, Zhang J, Deng A X, Jiang Y, van Groenigen K J, Zhang W J. Lower-than-expected CH4 emissions from rice paddies with rising CO2 concentrations[J]. Global Change Biology, 2020, 26: 2368-2376. |
[43] | Henriksen T M, Brelamd T A. Carbon mineralization,fungal and bacterial growth,and enzyme activities as affected by contact between crop residues and soil[J]. Biology and Fertility of Soils, 2002, 35(1): 41-48. |
[44] | Turmel M S, Speratti A, Baudron F. Crop residue management and soil health: A systems analysis[J]. Agricultural Systems, 2015, 134(3): 6-16. |
[45] | Liu S W, Ji C, Wang C, Chen J, Jin Y G, Zou Z H, Li S Q, Niu S L, Zou J W. Climatic role of terrestrial ecosystem under elevated CO2: Abottom-up greenhouse gases budget[J]. Ecology Letters, 2018, 21: 1108-1118. |
[46] | Watanabe A, Takeda T, Kimura M. Evaluation of carbon origins of CH4 emitted from rice paddies[J]. Journal of Geophysical Research, 1999, 104: 13623-23630. |
[47] | Hanson R S, Hanson T E. Methanotrophic bacteria[J]. Microbiological Reviews, 1996, 60: 439-471. |
[48] | Van der Gon H A C, Neue H. Oxidation of methane in the rhizosphere of rice plants[J]. Biology and Fertility of Soils, 1996, 22(4): 359-366. |
[49] | Schrope M K, Chanton J P, Allen L H, Baker J T. Effect of CO2 enrichment and elevated temperature on methane emissions from rice, Oryza sativa[J]. Global Change Biology, 1999, 5(5): 587-599. |
[50] | Jiang Y, K J, Huang S, Hungate B A, van Kessel C, Hu S J, Zhang J, Wu L H, Yan X J, Wang L L, Chen J, Hang X N, Zhang Y, Horwath W R, Ye R Z, Linquist B A, Song Z W, Zheng C Y, Deng A X, Zhang W J. Higher yields and lower methane emissions with new rice cultivars[J]. Global Change Biology, 2017, 23: 4728-4738. |
[51] | 沈学良, 田光蕾, 周元昌, 王缨. 水稻生物学特性对稻田甲烷排放的影响[J]. 农学学报, 2020, 10(2): 75-80. |
Shen X L, Tian G L, Zhou Y C, Wang Y. Effects of biological characteristics of rice on methane emission from rice field[J]. Journal of Agronomy, 2020, 10(2): 75-80. (in Chinese with English abstract) | |
[52] | Ma K, Qiu Q F, Lu Y H. Microbial mechanism for rice variety control on methane emission from rice field soil[J]. Global Change Biology, 2010, 16: 3085-3095. |
[53] | 江瑜, 管大海, 张卫建. 水稻植株特性对稻田甲烷排放的影响及其机制的研究进展[J]. 中国生态农业学报, 2018, 26(2): 175-181. |
Jiang Y, Guan D H, Zhang W J. Research progress of the effects of rice plant characteristics on methane emission from paddy fields and its mechanism[J]. Chinese Journal of Eco-Agriculture, 2018, 26(2): 175-181. (in Chinese with English abstract) | |
[54] | 宋练, 蔡创, 朱春梧. [CO2]升高对粮食作物影响的研究进展[J]. 农业环境科学学报, 2020, 39(4): 786-796. |
Song L, Cai C, Zhu C W. Review on crop responses to rising atmospheric [CO2][J]. Journal of Agro-Environment Science, 2020, 39(4): 786-796. | |
[55] | Yang L X, Liu H J, Wang Y X, Zhu J G, Huang J Y, Liu G, Dong G C, Wang Y L. Impact of elevated CO2 concentration on inter-subspecific hybrid rice cultivar Liangyoupeijiu under fully open-air field conditions[J]. Field Crops Research, 2009, 112: 7-15. |
[56] | Cai Z C, Shan Y H, Xu H. Effects of nitrogen fertilization on CH4 emissions from rice fields[J]. Soil Science and Plant Nutrition, 2007, 53: 353-361. |
[1] | CHEN Haotian, QIN Yuan, ZHONG Xiaohan, LIN Chenyu, QIN Jinghang, YANG Jianchang, ZHANG Weiyang. Research Progress on the Relationship Between Rice Root, Soil Properties and Methane Emissions in Paddy Fields [J]. Chinese Journal OF Rice Science, 2024, 38(3): 233-245. |
[2] | WU Yuhong, LI Yanhua, WANG Lü, QIN Yuhang, LI Shanshan, HAO Xingshun, ZHANG Qinglu, CUI Yuezhen, XIAO Fei. Improvement of Yield and Quality of Rice by Combining Returning of Green Manure (Astragalus smicus L.) and Rice Straw with Reduced Application of Nitrogen Fertilizer in Southern Shaanxi Province [J]. Chinese Journal OF Rice Science, 2023, 37(6): 628-641. |
[3] | MA Yihu, GU Daojian, LIU Lijun, WANG Zhiqin, ZHANG Hao, YANG Jianchang*. Effects of the Organic Fertilizers Made from Maize Straw on Grain Yield of Rice and Emission of Greenhouse Gases from Paddy Fields [J]. Chinese Journal of Rice Science, 2013, 27(5): 520-528. |
[4] | ZHAO Jianguo2, JIANG Kaifeng1,YANG Li1,YANG Qianhua1 ,WAN Xianqi1,CAO Yingjiang1,YOU Shumei1,LUO Jing1, ZHANG Tao1,*, ZHENG Jiakui1,*. QTL Mapping for Yield Related Components in A RIL Population of Rice [J]. Chinese Journal of Rice Science, 2013, 27(4): 344-352. |
[5] | Lu Wanfang,Chen Wei,Guo Wanmo,Duan Binwu. Effect of Air Temperature,Water and Fertilizer Management on Methane Emission from Middle-Season Rice Fields [J]. Chinese Journal of Rice Science, 1997, 11(3): 170-174 . |
[6] | Yu Meiyu,Yu Meiyu,Tao Longxing. The Effect of S-07 Chemical Control Technique on Rice Yeild [J]. Chinese Journal of Rice Science, 1994, 8(3): 181-184 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||