Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (2): 220-230.DOI: 10.16819/j.1001-7216.2025.240105
• Research Papers • Previous Articles Next Articles
LIU Zhichao1,2,#, CHANG Longxue1,2,#, AI Xin2, JIN Long2, ZHANG Fengyong2, LI Zhiyong2, WANG Yifeng2, TONG Xiaohong2, HUANG Jie2, ZHANG Jian2, JIN Jian1,*(), YING Jiezheng2,*(
)
Received:
2024-01-09
Revised:
2024-02-06
Online:
2025-03-10
Published:
2025-03-19
Contact:
JIN Jian, YING Jiezheng
About author:
#These authors contributed equally to this paper
刘智超1,2,#, 常龙学1,2,#, 艾鑫2, 金龙2, 张丰勇2, 李志永2, 王以锋2, 童晓红2, 黄捷2, 张健2, 金健1,*(), 应杰政2,*(
)
通讯作者:
金健,应杰政
作者简介:
#共同第一作者
基金资助:
LIU Zhichao, CHANG Longxue, AI Xin, JIN Long, ZHANG Fengyong, LI Zhiyong, WANG Yifeng, TONG Xiaohong, HUANG Jie, ZHANG Jian, JIN Jian, YING Jiezheng. Allele Mining and Breeding Application of Grain Number per Panicle Gene Gn1a in Rice[J]. Chinese Journal OF Rice Science, 2025, 39(2): 220-230.
刘智超, 常龙学, 艾鑫, 金龙, 张丰勇, 李志永, 王以锋, 童晓红, 黄捷, 张健, 金健, 应杰政. 水稻穗粒数基因Gn1a的等位基因挖掘与育种应用[J]. 中国水稻科学, 2025, 39(2): 220-230.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.240105
Fig. 1. Graphical genotype of the chromosome segment substitution line CSSL-H184 and a flow chart of rice materials developed in this study A, Graphical genotype of the chromosome segments substitution line of CSSL-H184; B, A flew chart of rice materials developed in this study.
群体 Population | 性状 Trait | 区间 Interval | LOD值 LOD value | 加性效应 Additive effect | 显性效应 Dominance effect | 贡献率 Variation explained (%) |
---|---|---|---|---|---|---|
C1 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | JD1037−ZC51 | 4.01 | −3.40 | −0.04 | 12.70 | |
每穗粒数NGPP | JD1037−ZC51 | 4.00 | −13.94 | −0.12 | 12.70 | |
C2 | 一次枝梗数NPB | ZC51−ZC100 | 3.12 | −0.45 | −0.09 | 10.20 |
二次枝梗数NSB | ZC51−ZC100 | 5.22 | −3.87 | −3.02 | 16.50 | |
每穗粒数NGPP | ZC51−ZC100 | 4.89 | −18.52 | −13.97 | 15.60 | |
C3 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | JD1037−ZC51 | 4.04 | −3.68 | −1.31 | 13.70 | |
每穗粒数NGPP | JD1037−ZC51 | 2.99 | −11.39 | −4.77 | 10.40 | |
C4 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | ZC51−ZC100 | 5.63 | −3.08 | −0.37 | 18.70 | |
每穗粒数NGPP | ZC51−ZC100 | 5.10 | −10.71 | −2.03 | 17.10 |
Table 1. QTL analysis of three panicle traits in 4 BC3F3 populations
群体 Population | 性状 Trait | 区间 Interval | LOD值 LOD value | 加性效应 Additive effect | 显性效应 Dominance effect | 贡献率 Variation explained (%) |
---|---|---|---|---|---|---|
C1 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | JD1037−ZC51 | 4.01 | −3.40 | −0.04 | 12.70 | |
每穗粒数NGPP | JD1037−ZC51 | 4.00 | −13.94 | −0.12 | 12.70 | |
C2 | 一次枝梗数NPB | ZC51−ZC100 | 3.12 | −0.45 | −0.09 | 10.20 |
二次枝梗数NSB | ZC51−ZC100 | 5.22 | −3.87 | −3.02 | 16.50 | |
每穗粒数NGPP | ZC51−ZC100 | 4.89 | −18.52 | −13.97 | 15.60 | |
C3 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | JD1037−ZC51 | 4.04 | −3.68 | −1.31 | 13.70 | |
每穗粒数NGPP | JD1037−ZC51 | 2.99 | −11.39 | −4.77 | 10.40 | |
C4 | 一次枝梗数NPB | ns | ||||
二次枝梗数NSB | ZC51−ZC100 | 5.63 | −3.08 | −0.37 | 18.70 | |
每穗粒数NGPP | ZC51−ZC100 | 5.10 | −10.71 | −2.03 | 17.10 |
Fig. 3. Comparison of Gn1a sequences and their corresponding amino acid sequences A, Sequence alignment of Gn1a alleles; B, Alignment of amino acid sequences encoded by the corresponding Gn1a alleles; The red box indicates the amino acid variant in Zhongjiazao 17 and Zhongzao 39. JZ1560, Jizi 1560; ZJZ17, Zhongjiazao 17; ZZ39, Zhongzao 39; HZ, Huazhan.
Fig. 4. Comparison of agronomic traits between Gn1a near-isogenic lines in four NIL populations A, Comparison of agronomic characters between Gn1a near-isogenic lines in four NIL populations; Asterisks indicate significant difference (* P<0.05; ** P< 0.01); B, Comparison of panicle phenotypes between Gn1a near-isogenic lines; Bar=5 cm.
序号 No. | 品种名称 Variety | 类型 Type | 等位基因 Allele | 序号 No. | 品种名称 Variety | 类型 Type | 等位基因 Allele | ||
---|---|---|---|---|---|---|---|---|---|
1 | 吉资1560 Jizi 1560 | 供体亲本 Donor parent | Gn1a-j | 21 | 明恢 63 Minghui 63 | 三系恢复系 Three-line restorer line | Gn1a-i | ||
2 | 中早39 Zhongzao 39 | 常规早籼 Conventional early indica rice | Gn1a-i | 22 | 南粳 44 Nanjing 44 | 南方粳稻 Southern japonica rice | Gn1a-i | ||
3 | 中嘉早17 Zhongjiazao 17 | 常规早籼 Conventional early indica rice | Gn1a-i | 23 | 镇稻 88 Zhendao 88 | 南方粳稻 Southern japonica rice | Gn1a-i | ||
4 | 中鉴100 Zhongjian 100 | 常规早籼 Conventional early indica rice | Gn1a-i | 24 | 浙禾香 2 号 Zhehexiang 2 | 南方粳稻 Southern japonica rice | Gn1a-j | ||
5 | 舟903 Zhou 903 | 常规早籼 Conventional early indica rice | Gn1a-i | 25 | 春江糯 6 号 Chunjiangnuo 6 | 南方粳稻 Southern japonica rice | Gn1a-j | ||
6 | 黄华占 Huanghuazhan | 常规晚籼 Conventional late indica rice | Gn1a-i | 26 | 沈农 265 Shennong 265 | 北方粳稻 Northern japonica rice | Gn1a-j | ||
7 | 扬稻6号 Yangdao 6 | 常规晚籼 Conventional late indica rice | Gn1a-i | 27 | 吉粳 88 Jijing 88 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
8 | 中籼2503 Zhongxian 2503 | 常规晚籼 Conventional late indica rice | Gn1a-i | 28 | 盐丰 47 Yanfeng 47 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
9 | 湘晚籼3号 Xiangwanxian 3 | 常规晚籼 Conventional late indica rice | Gn1a-i | 29 | 空育131 Kongyu 131 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
10 | 天丰B Tianfeng B | 三系保持系 Three-line maintainer line | Gn1a-i | 30 | 大量稻 Daliangdao | 农家品种 Farmhouse variety | Gn1a-j | ||
11 | II 32B | 三系保持系 Three-line maintainer line | Gn1a-i | 31 | 鸡吓稻 Jixiadao | 农家品种 Farmhouse variety | Gn1a-j | ||
12 | 协青早B Xieqingzao B | 三系保持系 Three-line maintainer line | Gn1a-i | 32 | 黑嘴稻 Heizuidao | 农家品种 Farmhouse variety | Gn1a-j | ||
13 | ZS97B | 三系保持系 Three-line maintainer line | Gn1a-i | 33 | 木樨球 Muxiqiu | 农家品种 Farmhouse variety | Gn1a-j | ||
14 | 贡877S Gong 877S | 两系不育系 Two-line male sterile line | Gn1a-i | 34 | 贩牛种 Fanniuzhong | 农家品种 Farmhouse variety | Gn1a-j | ||
15 | 中0S Zhong 0S | 两系不育系 Two-line male sterile line | Gn1a-i | 35 | 麦节青 Maijieqing | 农家品种 Farmhouse variety | Gn1a-j | ||
16 | 武香S Wuxiang S | 两系不育系 Two-line male sterile line | Gn1a-i | 36 | 茶陵野生稻 Chaling wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
17 | C815S | 两系不育系 Two-line male sterile line | Gn1a-i | 37 | 广西野生稻 Guangxi wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
18 | 华占 Huazhan | 三系恢复系 Three-line restorer line | Gn1a-i | 38 | 东乡野生稻 Dongxiang wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
19 | R173 | 三系恢复系 Three-line restorer line | Gn1a-i | 39 | 长雄野生稻 Oryza longistaminata | 长雄野生稻 Oryza longistaminata | Gn1a-j | ||
20 | 绵恢725 Mianhui 725 | 三系恢复系 Three-line restorer line | Gn1a-i |
Table 2. Gn1a allele typing of 39 rice materials
序号 No. | 品种名称 Variety | 类型 Type | 等位基因 Allele | 序号 No. | 品种名称 Variety | 类型 Type | 等位基因 Allele | ||
---|---|---|---|---|---|---|---|---|---|
1 | 吉资1560 Jizi 1560 | 供体亲本 Donor parent | Gn1a-j | 21 | 明恢 63 Minghui 63 | 三系恢复系 Three-line restorer line | Gn1a-i | ||
2 | 中早39 Zhongzao 39 | 常规早籼 Conventional early indica rice | Gn1a-i | 22 | 南粳 44 Nanjing 44 | 南方粳稻 Southern japonica rice | Gn1a-i | ||
3 | 中嘉早17 Zhongjiazao 17 | 常规早籼 Conventional early indica rice | Gn1a-i | 23 | 镇稻 88 Zhendao 88 | 南方粳稻 Southern japonica rice | Gn1a-i | ||
4 | 中鉴100 Zhongjian 100 | 常规早籼 Conventional early indica rice | Gn1a-i | 24 | 浙禾香 2 号 Zhehexiang 2 | 南方粳稻 Southern japonica rice | Gn1a-j | ||
5 | 舟903 Zhou 903 | 常规早籼 Conventional early indica rice | Gn1a-i | 25 | 春江糯 6 号 Chunjiangnuo 6 | 南方粳稻 Southern japonica rice | Gn1a-j | ||
6 | 黄华占 Huanghuazhan | 常规晚籼 Conventional late indica rice | Gn1a-i | 26 | 沈农 265 Shennong 265 | 北方粳稻 Northern japonica rice | Gn1a-j | ||
7 | 扬稻6号 Yangdao 6 | 常规晚籼 Conventional late indica rice | Gn1a-i | 27 | 吉粳 88 Jijing 88 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
8 | 中籼2503 Zhongxian 2503 | 常规晚籼 Conventional late indica rice | Gn1a-i | 28 | 盐丰 47 Yanfeng 47 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
9 | 湘晚籼3号 Xiangwanxian 3 | 常规晚籼 Conventional late indica rice | Gn1a-i | 29 | 空育131 Kongyu 131 | 北方粳稻 Northern japonica rice | Gn1a-i | ||
10 | 天丰B Tianfeng B | 三系保持系 Three-line maintainer line | Gn1a-i | 30 | 大量稻 Daliangdao | 农家品种 Farmhouse variety | Gn1a-j | ||
11 | II 32B | 三系保持系 Three-line maintainer line | Gn1a-i | 31 | 鸡吓稻 Jixiadao | 农家品种 Farmhouse variety | Gn1a-j | ||
12 | 协青早B Xieqingzao B | 三系保持系 Three-line maintainer line | Gn1a-i | 32 | 黑嘴稻 Heizuidao | 农家品种 Farmhouse variety | Gn1a-j | ||
13 | ZS97B | 三系保持系 Three-line maintainer line | Gn1a-i | 33 | 木樨球 Muxiqiu | 农家品种 Farmhouse variety | Gn1a-j | ||
14 | 贡877S Gong 877S | 两系不育系 Two-line male sterile line | Gn1a-i | 34 | 贩牛种 Fanniuzhong | 农家品种 Farmhouse variety | Gn1a-j | ||
15 | 中0S Zhong 0S | 两系不育系 Two-line male sterile line | Gn1a-i | 35 | 麦节青 Maijieqing | 农家品种 Farmhouse variety | Gn1a-j | ||
16 | 武香S Wuxiang S | 两系不育系 Two-line male sterile line | Gn1a-i | 36 | 茶陵野生稻 Chaling wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
17 | C815S | 两系不育系 Two-line male sterile line | Gn1a-i | 37 | 广西野生稻 Guangxi wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
18 | 华占 Huazhan | 三系恢复系 Three-line restorer line | Gn1a-i | 38 | 东乡野生稻 Dongxiang wild rice | 普通野生稻 Common wild rice | Gn1a-j | ||
19 | R173 | 三系恢复系 Three-line restorer line | Gn1a-i | 39 | 长雄野生稻 Oryza longistaminata | 长雄野生稻 Oryza longistaminata | Gn1a-j | ||
20 | 绵恢725 Mianhui 725 | 三系恢复系 Three-line restorer line | Gn1a-i |
Fig. 5. Gn1a allele haplotype A, Gn1a allele typing of 39 rice materials of 9 types; M, DNA marker; Lanes 1-39 represent 39 varieties respectively, corresponding to the serial number of Table 2; B, Haplotype analysis of 3000 rice materials in Rice SNP-Seek Database.
[1] | Sreenivasulu N, Pasion E, Kohli A. Idealizing inflorescence architecture to enhance rice yield potential for feeding nine billion people in 2050[J]. Molecular Plant, 2021, 14(6): 861-863. |
[2] | Wu X H, Liang Y L, Gao H, Feng Y T, Yang J J, Li M, Wang Y, Qin P, Sun X M, Li Z C. Enhancing rice grain production by manipulating the naturally evolved cis-regulatory element-containing inverted repeat sequence of OsREM20[J]. Molecular Plant, 2021, 14(6): 997-1011. |
[3] | Li G L, Zhang H L, Li J J, Zhang Z Y, Li Z C. Genetic control of panicle architecture in rice[J]. The Crop Journal, 2021, 9(3): 590-597. |
[4] | 马梦影, 巩文靓, 康雪蒙, 段海燕. 水稻理想株型改良的研究进展[J]. 中国农学通报, 2020, 36(29): 1-6. |
Ma M Y, Gong W L, Kang X M, Duan H Y. The improvement of ideal plant type of rice: A review[J]. Chinese Agricultural Science Bulletin, 2020, 36(29): 1-6. (in Chinese with English abstract) | |
[5] | Lu Y, Chuan M, Wang H, Lu Y, Chuan M L, Wang H Y, Chen R J, Tao T Y, Zhou Y, Xu Y, Li P C, Yao Y L, Xu C W, Yang Z F. Genetic and molecular factors in determining grain number per panicle of rice[J]. Frontiers in Plant Science, 2022, 13: 964246. |
[6] | Shaw B P, Sekhar S, Panda B B, Sahu G, Chandra T, Parida A K. Genes determining panicle morphology and grain quality in rice[J]. Functional Plant Biology, 2022, 49(8): 673-688. |
[7] | Duan E C, Wang Y H, Li X H, Lin Q B, Zhang T, Wang Y P, Zhou C L, Zhang H, Jiang L, Wang J L, Lei C L, Zhang X. OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 in rice[J]. Plant Cell, 2019, 31(5): 1026-1042. |
[8] | Ta K N, Khong N G, Ha T L, Nguyen D T, Mai D C, Hoang T G, Phung T P N, Bourrie I, Courtois B, Tran T T H, Dinh B Y, La T N, Do N V, Lebrun M, Gantet P, Jouannic S. A genome-wide association study using a Vietnamese landrace panel of rice (Oryza sativa) reveals new QTLs controlling panicle morphological traits[J]. BMC Plant Biology, 2018, 18(1): 282. |
[9] | Chun Y, Kumar A, Li X. Genetic and molecular pathways controlling rice inflorescence architecture[J]. Frontiers in Plant Science, 2022, 13: 1010138. |
[10] | Deveshwar P, Prusty A, Sharma S, Tyagi A K. Phytohormone-mediated molecular mechanisms involving multiple genes and QTL govern grain number in rice[J]. Frontiers in Genetics, 2020, 11: 586462. |
[11] | Hu Q Q, Wang W C, Lu Q F, Huang J L, Peng S B, Cui K H. Abnormal anther development leads to lower spikelet fertility in rice (Oryza sativa L.) under high temperature during the panicle initiation stage[J]. BMC Plant Biology, 2021, 21(1): 428. |
[12] | Weng J F, Gu S H, Wan X Y, Gao H, Guo T, Su N, Lei C L, Zhang X, Cheng Z J, Guo X P, Wang J L, Jiang L. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight[J]. Cell Research, 2008, 18(12): 1199-1209. |
[13] | Ashikari M, Sakakibara H, Lin S Y, Yamamoto T, Takashi T, Nishimura A, Angeles E R, Qian Q, Kitano H, Matsuoka M. Cytokinin oxidase regulates rice grain production[J]. Science, 2005, 309(5735): 741-745. |
[14] | Yan C J, Yan S, Yang Y C, Zeng X H, Fang Y W, Zeng S Y, Tian C Y, Sun Y W, Tang S Z, Gu M H. Development of gene-tagged markers for quantitative trait loci underlying rice yield components[J]. Euphytica, 2009, 169(2): 215-226. |
[15] | Wang J, Xu H X, Li N W, Fan F F, Wang L T, Zhu Y G, Li S Q. Artificial selection of Gn1a plays an important role in improving rice yields across different ecological regions[J]. Rice(NY), 2015, 8(1): 37. |
[16] | Huang X Z, Qian Q, Liu Z B, Sun H Y, He S Y, Luo D, Xia G M, Chu C C, Li J Y, Fu X D. Natural variation at the DEP1 locus enhances grain yield in rice[J]. Nature Genetics, 2009, 41(4): 494-497. |
[17] | Xue W Y, Xing Y Z, Weng X Y, Zhao Y, Tang W J, Wang L, Zhou H J, Yu S B, Xu C G, Li X H, Zhang Q F. Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice[J]. Nature Genetics, 2008, 40(6): 761-767. |
[18] | Miura K, Ikeda M, Matsubara A, Song X J, Ito M, Asano K, Matsuoka M, Kitano H, Ashikari M. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics, 2010, 42(6): 545-549. |
[19] | Komatsu M, Maekawa M, Shimamoto K, Kyozuka J. The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis-branch and spikelet development[J]. Developmental Biology, 2001, 231(2): 364-373. |
[20] | Zhang Z Y, Li J J, Yao G X, Zhang H L, Dou H J, Shi H L, Sun X M, Li Z C. Fine mapping and cloning of the grain number per-panicle gene (Gnp4) on chromosome 4 in rice (Oryza sativa L.)[J]. Agricultural Sciences in China, 2011, 10(12): 1825-1833. |
[21] | Ikeda K, Ito M, Nagasawa N, Kyozuka J, Nagato Y. Rice ABERRANT PANICLE ORGANIZATION 1, encoding an F-box protein, regulates meristem fate[J]. The Plant Journal, 2007, 51(6): 1030-1040. |
[22] | Ikeda-Kawakatsu K, Maekawa M, Izawa T, Itoh J I, Nagato Y. ABERRANT PANICLE ORGANIZATION 2/RFL, the rice ortholog of Arabidopsis LEAFY, suppresses the transition from inflorescence meristem to floral meristem through interaction with APO1[J]. The Plant Journal, 2012, 69(1): 168-180. |
[23] | Oikawa T, Koshioka M, Kojima K, Yoshida H, Kawata M. A role of OsGA20ox1, encoding an isoform of gibberellin 20-oxidase, for regulation of plant stature in rice[J]. Plant Molecular Biology, 2004, 55(5): 687-700. |
[24] | Huo X, Wu S, Zhu Z F, Liu F X, Fu Y C, Cai H W, Sun X Y, Gu P, Xie D X, Tan L B, Sun C Q. NOG1 increases grain production in rice[J]. Nature Communications, 2017, 8(1): 1497. |
[25] | Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J. Direct control of shoot meristem activity by a cytokinin-activating enzyme[J]. Nature, 2007, 445(7128): 652-655. |
[26] | Guo T, Lu Z Q, Shan J X, Ye W W, Dong N Q, Lin H X. ERECTA1 acts upstream of the OsMKKK10-OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice[J]. The Plant Cell, 2020, 32(9): 2763-2779. |
[27] | Wang H M, Tong X H, Tang L Q, Wang Y F, Zhao J, Li Z Y, Liu X X, Shu Y Z, Yin M, Adegoke T V, Liu W N, Wang S, Xu H Y, Ying J Z, Yuan W Y, Yao J L, Zhang J. RLB (RICE LATERAL BRANCH) recruits PRC2-mediated H3K27 tri-methylation on OsCKX4 to regulate lateral branching[J]. Plant Physiology, 2022, 188(1): 460-476. |
[28] | Li S Y, Zhao B R, Yuan D Y, Duan M J, Qian Q, Tang L, Wang B, Liu X Q, Zhang J, Wang J, Sun J Q, Liu Z. Rice zinc finger protein DST enhances grain production through controlling Gn1a/OsCKX2 expression[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 3167-3172. |
[29] | 唐志明, 马荣荣, 王晓燕, 陆永法, 周华成, 蔡克峰. 甬优系列籼粳杂交组合产量优势与亲本籼粳成分及农艺性状间的关系研究[J]. 杂交水稻, 2021, 36(5): 65-72. |
Tang Z M, Ma R R, Wang X Y, Lu Y F, Zhou H C, Cai K F. Relationship of yield heterosis of Yongyou series of indica-japonica hybrid combinations to the genetic distance and agronomical traits of parents[J]. Hybrid Rice, 2021, 36(5): 65-72. (in Chinese with English abstract) | |
[30] | 陈名红, 李玉, 刘多, 佘鑫, 熊华斌, 李成云. 利用改良CTAB法提取卷丹百合鳞叶基因组DNA[J]. 江苏农业科学, 2013, 41(3): 27-29. |
Chen M H, Li Y, Liu D, She X, Xiong H B, Li C Y. Extraction of genomic DNA from the scaly leaves of Lilium lancifolium Thunb. using an improved CTAB method[J]. Jiangsu Agricultural Sciences, 2013, 41(3): 27-29. (in Chinese) | |
[31] | Huang J P, Chen Z M, Lin J J, Guan B B, Chen J W, Zhang Z S, Chen F Y, Jiang L R, Zheng J S, Wang T S, Chen H Q, Xie W Y. gw2.1, a new allele of GW2, improves grain weight and grain yield in rice[J]. Plant Science, 2022, 325: 111495. |
[32] | Fujino K, Yamanouchi U. Genetic effect of a new allele for the flowering time locus Ghd7 in rice[J]. Breeding Science, 2020, 70(3): 342-346. |
[33] | Sun J, Liu D, Wang J Y, Ma D R, Tang L, Gao H, Xu Z J. The contribution of intersubspecific hybridization to the breeding of super-high-yielding japonica rice in northeast China[J]. Theoretical and Applied Genetics, 2012, 125(6): 1149-1157. |
[34] | Feng X M, Wang C, Nan J Z, Zhang X H, Wang R S, Jiang G Q, Yuan Q B, Lin S Y. Updating the elite rice variety Kongyu 131 by improving the Gn1a locus[J]. Rice, 2017, 10(1): 35. |
[35] | 温一博, 陈淑婷, 徐正进, 孙健, 徐铨. DEP1、Gn1a和qSW5组合应用调控水稻穗部性状[J]. 中国农业科学, 2023, 56(7): 1218-1227. |
Wen Y B, Chen S T, Xu Z J, Sun J, Xu Q. Combination of DEP1, Gn1a, and qSW5 regulates the panicle architecture in rice[J]. Scientia Agricultura Sinica, 2023, 56(7): 1218-1227. (in Chinese with English abstract) | |
[36] | 沈兰, 李健, 付亚萍, 王俊杰, 华宇峰, 焦晓真, 严长杰, 王克剑. 利用CRISPR/Cas9系统定向改良水稻粒长和穗粒数性状[J]. 中国水稻科学, 2017, 31(3): 223-231. |
Shen L, Li J, Fu Y P, Wang J J, Hua Y F, Jiao X Z, Yan C J, Wang K J. Orientation improvement of grain length and grain number in rice by using CRISPR/Cas9 system[J]. Chinese Journal of Rice Science, 2017, 31(3): 223-231. (in Chinese with English abstract) |
[1] | CHEN Zhihui, TAO Yajun, FAN Fangjun, XU Yang, WANG Fangquan, LI Wenqi, GULINAER·Bahetibieke , JIANG Yanjie, ZHU Jianping, LI Xia, YANG Jie. Development and Application of a Functional Marker for Heading Date Gene Hd6 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 47-54. |
[2] | FENG Aiqing, WANG Congying, SU Jing, FENG Jinqi, CHEN Kailing, LIN Xiaopeng, CHEN Bing, LIANG Meiling, YANG Jianyuan, ZHU Xiaoyuan, CHEN Shen. Development and Agronomic Traits Analysis of New Rice Resistance Lines to Xanthomonas oryzae pv. oryzicola [J]. Chinese Journal OF Rice Science, 2023, 37(6): 587-596. |
[3] | CHENG Ling, HUANG Fugang, QIU Yipu, WANG Xinyi, SHU Wan, QIU Yongfu, LI Fahuo. Genetic Analysis and Identification of Brown Planthopper Resistance Gene in indica Rice Accession 570011 [J]. Chinese Journal OF Rice Science, 2023, 37(3): 244-252. |
[4] | CHEN Tao, ZHAO Qingyong, ZHU Zhen, ZHAO Ling, YAO Shu, ZHOU Lihui, ZHAO Chunfang, ZHANG Yadong, WANG Cailin. Development of New Low Glutelin Content japonica Rice Lines with Good Eating Quality and Fragrance by Molecular Marker-Assisted Selection [J]. Chinese Journal OF Rice Science, 2023, 37(1): 55-65. |
[5] | Tao CHEN, Xuchao SUN, Shanlei ZHANG, Wenhua LIANG, Lihui ZHOU, Qingyong ZHAO, Shu YAO, Ling ZHAO, Chunfang ZHAO, Zhen ZHU, Yadong ZHANG, Cailin WANG. Development and Verification of Specific Molecular Markers for Pigm Gene Associated with Broad-spectrum Resistance to Rice Blast [J]. Chinese Journal OF Rice Science, 2020, 34(1): 28-36. |
[6] | Zhuanzhuan CHEN, Xianfeng LI, Min ZHONG, Jiaqi GE, Xiaolei FAN, Changquan ZHANG, Qiaoquan LIU. Grain Quality as Affected by Down-regulation of Expression of Different ALK Alleles in indica Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2019, 33(6): 513-522. |
[7] | Haoyu JIANG, Gai ZENG, Ming HAO, Xianggui HUANG, Yinghui XIAO. Identification of Brown Planthopper Resistance Genes in Broad-spectrum Blast Resistant Rice Germplasm 75-1-127 and Its Molecular Marker-Assisted Selection Breeding [J]. Chinese Journal OF Rice Science, 2019, 33(3): 227-234. |
[8] | Hong GAO, Nan JIANG, Guoyi LÜ, Yingjun XIA, Jiayu WANG, Jian SUN, Liang TANG, Zhengjin XU, Guomin SUI. Dissection of Grain Yield Differences Between japonica Rice in Northeast China and in Japan [J]. Chinese Journal OF Rice Science, 2018, 32(4): 357-364. |
[9] | Chunlin SHI, Zongqiang LUO, Min JIANG, Yongle SHI, Yingxue LI, Shouli XUAN, Yang LIU, Shenbin YANG, Gengkang YU. An Quantitative Analysis of High Temperature Effects During Meiosis Stage on Rice Grain Number per Panicle [J]. Chinese Journal OF Rice Science, 2017, 31(6): 658-664. |
[10] | Wen JING, Wenhua ZHANG. Research Progress on Gene Mapping and Cloning for Salt Tolerance and Variety Improvement for Salt Tolerance by Molecular Marker-Assisted Selection in Rice [J]. Chinese Journal OF Rice Science, 2017, 31(2): 111-123. |
[11] | Jun WANG, Jin-yan ZHU, Yong ZHOU, Jie YANG, Fang-jun FAN, Wen-qi LI, Fang-quan WANG, Wei-gong ZHONG, Guo-hua LIANG. QTL Analysis for Heading Date in Rice (Oryza sativa L.) Under Different Temperatures and Light Intensities [J]. Chinese Journal OF Rice Science, 2016, 30(3): 247-255. |
[12] | ZUO Shimin1,2, KANG Houxiang2, LI Qianqian1, CHEN Zongxiang1, ZHANG Yafang1, LIU Wende2, WANG Guoliang2, CHEN Hongqi3, *, PAN Xuebiao1,* . Genomewide Association Analysis on Genes Controlling Panicle Traits of Varieties from International Rice Core Collection Bank and Its Breeding Utilization [J]. Chinese Journal of Rice Science, 2014, 28(6): 649-658. |
[13] | TRAN Thi Thu Giang1,2, DANG Xiaojing1, LIU Qiangming1, ZHAO Kaiming1,3, WANG Hui1, HONG Delin1 ,*. Association Analysis of Rice Grain Traits with SSR Markers [J]. Chinese Journal of Rice Science, 2014, 28(3): 243-257. |
[14] | NIU Fuan1,2, CHEN Lan1, ZHANG Hong1, YUAN Qin2, CHENG Can2, ZHOU Jihua2, HONG Delin1,* . Mining Elite Alleles of Panicle Angle Trait in japonica Rice [J]. Chinese Journal of Rice Science, 2013, 27(4): 373-380. |
[15] | ZHOU Lihui, ZHAO Chunfang, ZHAO Ling, ZHANG Yadong, ZHU Zhen, CHEN Tao, ZHAO Qingyong, YAO Shu, YU Xin, WANG Cailin*. QTL Detection for Leaf Morphology of Rice Using Chromosome Segment Substitution Lines [J]. Chinese Journal of Rice Science, 2013, 27(1): 26-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||