Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (2): 231-244.DOI: 10.16819/j.1001-7216.2025.241004
• Research Papers • Previous Articles Next Articles
XU Yuemei, PENG Shiyan, SUN Zhiwei, WANG Zhiqin, ZHU Kuanyu*(), YANG Jianchang*(
)
Received:
2024-10-12
Revised:
2025-03-06
Online:
2025-03-10
Published:
2025-03-19
Contact:
ZHU Kuanyu, YANG Jianchang
徐月梅, 彭诗燕, 孙志伟, 王志琴, 朱宽宇*(), 杨建昌*(
)
通讯作者:
朱宽宇,杨建昌
基金资助:
XU Yuemei, PENG Shiyan, SUN Zhiwei, WANG Zhiqin, ZHU Kuanyu, YANG Jianchang. Differences in Endogenous Hormone Levels and Their Relationship with Yield and Phosphorus Use Efficiency in Rice Varieties With Various Tolerance to Low Phosphorus Stress[J]. Chinese Journal OF Rice Science, 2025, 39(2): 231-244.
徐月梅, 彭诗燕, 孙志伟, 王志琴, 朱宽宇, 杨建昌. 不同耐低磷水稻品种的内源激素水平差异及其与产量和磷利用率的关系[J]. 中国水稻科学, 2025, 39(2): 231-244.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.241004
气象因子 Meteorological factors | 五月 May | 六月 June | 七月 July | 八月 August | 九月 September | 十月 October |
---|---|---|---|---|---|---|
平均温度Average temperature(℃) | 21.8 | 25.7 | 28.8 | 28.2 | 24.5 | 18.4 |
降水量Precipitation(mm) | 75.7 | 246 | 625 | 92.6 | 253 | 32.7 |
日照时长Sunshine hours(h) | 156 | 136 | 101 | 179 | 98.0 | 195 |
Table 1. Temperature, precipitation, and sunshine hours during rice growing season in 2023
气象因子 Meteorological factors | 五月 May | 六月 June | 七月 July | 八月 August | 九月 September | 十月 October |
---|---|---|---|---|---|---|
平均温度Average temperature(℃) | 21.8 | 25.7 | 28.8 | 28.2 | 24.5 | 18.4 |
降水量Precipitation(mm) | 75.7 | 246 | 625 | 92.6 | 253 | 32.7 |
日照时长Sunshine hours(h) | 156 | 136 | 101 | 179 | 98.0 | 195 |
处理 Treatment | 类别/品种 Category/Variety | 穗数 Panicles (No./m2) | 每穗粒数 Spikelets per panicle | 总颖花数 Total spikelets number(×103/m2) | 千粒重 1000-grain weight (g) | 结实率 Filled-grain percentage(%) | 产量 Grain yield (g/m2) |
---|---|---|---|---|---|---|---|
正常磷 NP | 强耐低磷/扬稻2号 STV/Yangdao 2 | 300.78 d | 156.35 a | 47.01 a | 25.16 b | 68.71 e | 812.68 a |
强耐低磷/盐粳2号 STV/Yanjing 2 | 511.64 a | 93.49 e | 47.83 a | 22.51 d | 73.26 c | 788.11 b | |
弱耐低磷/国际24号 WTV/IR24 | 286.62 e | 101.61 d | 29.12 e | 24.21 c | 58.90 g | 415.15 f | |
弱耐低磷/镇稻88 WTV/Zhendao 88 | 375.56 c | 110.63 c | 41.55 b | 24.48 bc | 70.87 d | 720.77 d | |
低磷 LP | 强耐低磷/扬稻2号 STV/Yangdao 2 | 295.46 d | 128.84 b | 38.07 c | 26.78 a | 73.55 c | 749.77 c |
强耐低磷/盐粳2号 STV/Yanjing 2 | 442.37 b | 79.12 f | 35.00 d | 24.32 bc | 83.92 a | 714.23 d | |
弱耐低磷/国际24号 WTV/IR24 | 270.64 f | 81.02 f | 21.93 g | 24.96 bc | 62.27 f | 340.79 g | |
弱耐低磷/镇稻88 WTV/Zhendao 88 | 299.30 d | 91.52 e | 27.38 f | 26.19 a | 76.35 b | 547.56 e |
Table 2. Grain yield and its components of rice varieties differed in tolerance to LP under various P levels
处理 Treatment | 类别/品种 Category/Variety | 穗数 Panicles (No./m2) | 每穗粒数 Spikelets per panicle | 总颖花数 Total spikelets number(×103/m2) | 千粒重 1000-grain weight (g) | 结实率 Filled-grain percentage(%) | 产量 Grain yield (g/m2) |
---|---|---|---|---|---|---|---|
正常磷 NP | 强耐低磷/扬稻2号 STV/Yangdao 2 | 300.78 d | 156.35 a | 47.01 a | 25.16 b | 68.71 e | 812.68 a |
强耐低磷/盐粳2号 STV/Yanjing 2 | 511.64 a | 93.49 e | 47.83 a | 22.51 d | 73.26 c | 788.11 b | |
弱耐低磷/国际24号 WTV/IR24 | 286.62 e | 101.61 d | 29.12 e | 24.21 c | 58.90 g | 415.15 f | |
弱耐低磷/镇稻88 WTV/Zhendao 88 | 375.56 c | 110.63 c | 41.55 b | 24.48 bc | 70.87 d | 720.77 d | |
低磷 LP | 强耐低磷/扬稻2号 STV/Yangdao 2 | 295.46 d | 128.84 b | 38.07 c | 26.78 a | 73.55 c | 749.77 c |
强耐低磷/盐粳2号 STV/Yanjing 2 | 442.37 b | 79.12 f | 35.00 d | 24.32 bc | 83.92 a | 714.23 d | |
弱耐低磷/国际24号 WTV/IR24 | 270.64 f | 81.02 f | 21.93 g | 24.96 bc | 62.27 f | 340.79 g | |
弱耐低磷/镇稻88 WTV/Zhendao 88 | 299.30 d | 91.52 e | 27.38 f | 26.19 a | 76.35 b | 547.56 e |
Fig. 1. Phosphorus (P) accumulation (A), dry matter production per unit P (B) and internal P use efficiency (C) of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2, Yangdao 2; YJ2, Yanjing 2. Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24. LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MA, Maturity. Different letters within the same stage indicate the significance at the P = 0.05 level.
变异来源 Source of variation | 磷产谷利用率 IPE | 磷积累量 PA | 磷素干物质生产效率 PUEDW | 产量 Grain yield |
---|---|---|---|---|
品种 Variety(V) | 467** | 294** | 2.83ns | 1068** |
处理 Treatment(T) | 4583** | 6504** | 602** | 293** |
品种×处理 (V×T) | 43.6** | 42.3** | 4.97* | 21.2** |
Table 3. Variance analysis of yield and phosphorus use efficiency (PUE) between varieties and treatments
变异来源 Source of variation | 磷产谷利用率 IPE | 磷积累量 PA | 磷素干物质生产效率 PUEDW | 产量 Grain yield |
---|---|---|---|---|
品种 Variety(V) | 467** | 294** | 2.83ns | 1068** |
处理 Treatment(T) | 4583** | 6504** | 602** | 293** |
品种×处理 (V×T) | 43.6** | 42.3** | 4.97* | 21.2** |
Fig. 2. Root length (A), root diameter (B) and root dry weight (C) of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling; MA, Maturity. Different letters indicate significance at the P = 0.05 level.
Fig. 3. Shoot dry weight (A) and root oxidation activity (B) of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling; MA, Maturity; DW, Dry matter weight. Different letters within the same stage indicate significance at the P = 0.05 level.
Fig. 4. Content of indole-3-acetic acid (A, B), zeatin and zeatin riboside (C, D), and abscisic acid (E, F) in roots and leaves of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
Fig. 5. Ethylene emission rate (A, C) and l-aminocyclopropane-1-carboxylic acid (ACC) content (B, D) in roots and leaves of rice varieties differing in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
Fig. 6. Content of jasmonic acid (A, B) and methyl jasmonic acid (C, D) in roots and leaves of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
Fig. 7. Content of 24-epibrassinolide (A, B) and 28-homobrassinolide (C, D) in roots and leaves of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
Fig. 8. Strigolactones content in roots and leaves of rice varieties differed in tolerance to LP under various P levels Varieties with strong tolerance to low P: YD2(Yangdao 2), YJ2(Yanjing 2). Varieties with weak tolerance to low P: ZD88(Zhendao 88), IR24(International rice 24). LP, Low phosphorus treatment; NP, Normal phosphorus treatment. MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling. Different letters indicate significance at the P = 0.05 level.
Fig. 9. Correlation analysis of grain yield, P use efficiency, root traits, and endogenous hormone levels (A, B) of rice varieties with various LP tolerance and random forest analysis of the contribution of hormone levels to grain yield and P use efficiency (C) MT, Mid-tillering; PI, Panicle initiation; HD, Heading; MGF, Mid-grain filling; PA, Phosphorus accumulation; IPE, Internal P use efficiency; PUEDW, Dry matter production per unit P; SDW, Shoot dry weight; TS, Total spikelets; FG, Filled grains; RL, Root length;RDW, Root dry weight; ROA, Root oxidation activity; R, Roots; L, Leaves; IAA, Indole-3-acetic acid; Z+ZR, Zeatin+zeatin riboside; ABA, Abscisic acid; ETH, Ethylene; ACC, l-aminocyclopropane-1-carboxylic acid; JA, Jasmonic acid; MeJA, Methyl jasmonate; SLs, Strigolactones; 24-EBL, 24-epibrassinolide; 28-HBL, 28-homobrassinolide; Increase in mean squared error, a higher value indicates greater importance.
[1] | 徐晓明, 张迎信, 王会民, 程式华, 曹立勇. 水稻氮、磷、钾吸收利用遗传特征研究进展[J]. 核农学报, 2016, 30(4): 685-694. |
Xu X M, Zhang Y X, Wang H M, Cheng S H, Cao L Y. R Advancement of genetic characteristics for N, P and K utilization of rice[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(4): 685-694. (in Chinese with English abstract) | |
[2] | 李继云, 刘秀娣, 周伟, 孙建华, 童依平, 刘文杰, 李振声, 王培田, 姚树江. 有效利用土壤营养元素的作物育种新技术研究[J]. 中国科学: B辑, 1995(1): 41-48. |
Li J Y, Liu X D, Zhou W, Sun J H, Tong Y P, Liu W J, Li Z S, Wang P T, Yao S J. Study on new techniques of crop breeding for effective utilization of soil nutrient elements[J]. Science in China: Series B, 1995(1): 41-48. (in Chinese with English abstract) | |
[3] | 陈健晓, 王小娟, 屠乃美, 王效宁, 符策强, 唐清杰, 刘爱玉. 磷水平对不同香稻品种苗期形态生理的影响[J]. 华北农学报, 2020, 35(2): 117-125. |
Chen J X, Wang X J, Tu N M, Wang X N, Fu C Q, Tang Q J, Liu A Y. Effects of phosphorus levels on morphological physiology of different fragrant rice varieties at seedling stage[J]. Acta Agriculturae Boreali-Sinica, 2020, 35(2): 117-125. (in Chinese with English abstract) | |
[4] | 陈磊, 王盛锋, 刘荣乐, 汪洪. 不同磷供应水平下小麦根系形态及根际过程的变化特征[J]. 植物营养与肥料学报, 2012, 18(2): 324-331. |
Chen L, Wang S F, Liu R L, Wang H. C Changes of root morphology and rhizosphere processes of wheat under different phosphate supply[J]. Journal of Plant Nutrition and Fertilizers, 2012, 18(2): 324-331. (in Chinese with English abstract) | |
[5] | Weyers J D B, Paterson N W. Plant hormones and the control of physiological processes[J]. New Phytologist, 2001, 152(3): 375-407. |
[6] | Verma V, Ravindran P, Kumar P P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology, 2016, 16: 86. |
[7] | Yang Y, Wang L, Zhang D, Che Z, Wang Q, Cui R, Zhao W, Huang F, Zhang H, Cheng H, Yu D. Soybean type-B response regulator GmRR1 mediates phosphorus uptake and yield by modifying root architecture[J]. Plant Physiology, 2024, 194(3): 1527-1544. |
[8] | Hu D, Cui R, Wang K, Yang Y M, Wang R, Zhu H, He M, Fan Y, Wang L, Chu S, Zhang J, Zhang S, Yang Y, Zhai X, Lv G, Zhang D D, Wang J, Kong F, Yu D, Zhang H Y, Zhang D. The Myb73-GDPD2-GA2ox1 transcriptional regulatory module confers phosphate deficiency tolerance in soybean[J]. The Plant Cell, 2024, 36(6): 2176-2200. |
[9] | Zhang Y, Li T T, Wang L F, Guo J X, Lu K K, Song R F, Zuo J X, Chen H H, Liu W C. Abscisic acid facilitates phosphate acquisition through the transcription factor ABA INSENSITIVE5 in Arabidopsis[J]. The Plant Journal, 2022, 111(1): 269-281. |
[10] | Santoro V, Schiavon M, Visentin I, Constán-Aguilar C, Cardinale F, Celi L. Strigolactones affect phosphorus acquisition strategies in tomato plants[J]. Plant, Cell & Environment, 2021, 44(11): 3628-3642. |
[11] | Ma L, Zhang J, Li Z, Xin X, Guo Z, Wang D, Li D, Zhao B. Long-term phosphorus deficiency decreased bacterial-fungal network complexity and efficiency across three soil types in China as revealed by network analysis[J]. Applied Soil Ecology, 2020, 148: 103506. |
[12] | Yan J, Lou L, Bai W, Zhang S, Zhang N. Phosphorus deficiency is the main limiting factor for re-vegetation and soil microorganisms in Mu Us Sandy Land, Northwest China[J]. Science of the Total Environment, 2023, 900: 165770. |
[13] | Deng Y, Men C, Qiao S, Wang W, Gu J, Liu L, Zhang Z, Zhang H, Wang Z, Yang J. Tolerance to low phosphorus in rice varieties is conferred by regulation of root growth[J]. The Crop Journal, 2020, 8(4): 534-547. |
[14] | Beltrano J, Ronco M G, Montaldi E R. Drought stress syndrome in wheat is provoked by thylene evolution imbalance and reversed by rewatering, aminoethoxyvinylglycine, or sodium benzoate[J]. Journal of Plant Growth Regulation, 1999, 18(2): 59-64. |
[15] | Cheng C Y, Lur H S. Ethylene may be involved in abortion of the maize caryopsis[J]. Physiologia Plantarum, 1996, 98(2): 245-252. |
[16] | Bollmark M, Kubát B, Eliasson L. Variation in endogenous cytokinin content during adventitious root formation in pea cuttings[J]. Journal of Plant Physiology, 1988, 132(3): 262-265. |
[17] | Pan X, Welti R, Wang X. Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry[J]. Nature Protocols, 2010, 5(6): 986-992. |
[18] | Liu X, Yang Y L, Lin W H, Tong J, Huang Z, Xiao L. Determination of both jasmonic acid and methyl jasmonate in plant samples by liquid chromatography tandem mass spectrometry[J]. Chinese Science Bulletin, 2010, 55(21): 2231-2235. |
[19] | Ding J, Mao L J, Yuan B F, Feng Y Q. A selective pretreatment method for determination of endogenous active brassinosteroids in plant tissues: Double layered solid phase extraction combined with boronate affinity polymer monolith microextraction[J]. Plant Methods, 2013, 9: 13. |
[20] | Chen J, Fei K, Zhang W, Wang Z, Zhang J, Yang J. Brassinosteroids mediate the effect of high temperature during anthesis on the pistil activity of photo- thermosensitive genetic male-sterile rice lines[J]. The Crop Journal, 2021, 9(1): 109-119. |
[21] | Stewart W M, Dibb D W, Johnston A E, Smyth T J. The contribution of commercial fertilizer nutrients to food production[J]. Agronomy Journal, 2005, 97(1): 1-6. |
[22] | Irfan M, Shah J A, Abbas M. Evaluating the performance of mungbean genotypes for grain yield, phosphorus accumulation and utilization efficiency[J]. Journal of Plant Nutrition, 2017, 40(19): 2709-2720. |
[23] | 孙志伟, 徐月梅, 许荣越, 朱宽宇, 杨建昌. 水稻低磷胁迫响应及其调控机制的研究进展[J]. 核农学报, 2023, 37(08): 1562-1570. |
Sun Z W, Xu Y M, Xu R Y, Zhu K Y, Yang J C. Research advance in the response of rice to low phosphorus stress and its regulation mechanism[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(8): 1562-1570. (in Chinese with English abstract) | |
[24] | Wang K, Cui K, Liu G, Luo X, Huang J, Nie L, Wei D, Peng S. Low straw phosphorus concentration is beneficial for high phosphorus use efficiency for grain production in rice recombinant inbred lines[J]. Field Crops Research, 2017, 203: 65-73. |
[25] | Sun Z, Qiao S, Xu Y, Ji D, Zhang W, Gu J, Zhu K, Wang Z, Zhang J, Yang J. Agronomic and physiological performance of the indica rice varieties differing in tolerance to low phosphorus[J]. Agronomy, 2023, 14(1): 41. |
[26] | Gonçalves B X, Lima-Melo Y, dos Santos Maraschin F, Margis-Pinheiro M. Phosphate starvation responses in crop roots: From well-known players to novel candidates[J]. Environmental and Experimental Botany, 2020, 178: 104162. |
[27] | Ku Y S, Sintaha M, Cheung M Y, Lam H M. Plant hormone signaling crosstalks between biotic and abiotic stress responses[J]. International Journal of Molecular Sciences, 2018, 19(10): 3206. |
[28] | Munné-Bosch S, Müller M. Hormonal cross-talk in plant development and stress responses[J]. Frontiers in Plant Science, 2013, 4: 529. |
[29] | Liu J, Moore S, Chen C, Lindsey K. Crosstalk complexities between auxin, cytokinin, and ethylene in Arabidopsis root development: From experiments to systems modeling, and back again[J]. Molecular Plant, 2017, 10(12): 1480-1496. |
[30] | Yang J, Zhang J, Wang Z, Zhu Q. Hormones in the grains in relation to sink strength and postanthesis development of spikelets in rice[J]. Plant Growth Regulation, 2003, 41(3): 185-195. |
[31] | Guo T, Lu Z Q, Shan J X, Ye W W, Dong N Q, Lin H X. ERECTA1 acts upstream of the OsMKKK10- OsMKK4-OsMPK6 cascade to control spikelet number by regulating cytokinin metabolism in rice[J]. The Plant Cell, 2020, 32(9): 2763-2779. |
[32] | Xu W, Jia L, Shi W, Liang J, Zhou F, Li Q, Zhang J. Abscisic acid accumulation modulates auxin transport in the root tip to enhance proton secretion for maintaining root growth under moderate water stress[J]. New Phytologist, 2013, 197(1): 139-150. |
[33] | Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress[J]. Journal of Plant Physiology, 2013, 170(10): 915-922. |
[34] | Miyoshi Y, Soma F, Yin Y G, Suzui N, Noda Y, Enomoto K, Nagao Y, Yamaguchi M, Kawachi N, Yoshida E, Tashima H, Yamaya T, Kuya N, Teramoto S, Uga Y. Rice immediately adapts the dynamics of photosynthates translocation to roots in response to changes in soil water environment[J]. Frontiers in Plant Science, 2022, 13: 1024144. |
[35] | Gu J, Li Z, Mao Y, Struik P C, Zhang H, Liu L, Wang Z, Yang J. Roles of nitrogen and cytokinin signals in root and shoot communications in maximizing of plant productivity and their agronomic applications[J]. Plant Science, 2018, 274: 320-331. |
[36] | Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G. Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress[J]. Journal of Plant Physiology, 2013, 170(10): 915-922. |
[37] | Yang J, Zhang J, Wang Z, Zhu Q, Wang W. Hormonal changes in the grains of rice subjected to water stress during grain filling[J]. Plant Physiology, 2001, 127(1): 315-323. |
[38] | Zhang H, Tan G, Yang L, Yang J, Zhang J, Zhao B. Hormones in the grains and roots in relation to post-anthesis development of inferior and superior spikelets in japonica/indica hybrid rice[J]. Plant Physiology and Biochemistry, 2009, 47(3): 195-204. |
[39] | Sekhar S, Panda B B, Mohapatra T, Das K, Shaw B P, Kariali E, Mohapatra P K. Spikelet-specific variation in ethylene production and constitutive expression of ethylene receptors and signal transducers during grain filling of compact- and lax-panicle rice (Oryza sativa) cultivars[J]. Journal of Plant Physiology, 2015, 179: 21-34. |
[40] | Panda B B, Kariali E, Panigrahi R, Mohapatra P K. High ethylene production slackens seed filling in compact panicled rice cultivar[J]. Plant Growth Regulation, 2009, 58(2): 141-151. |
[41] | Yang J C, Zhang J H, Liu K, Wang Z, Liu L. Abscisic acid and ethylene interact in rice spikelets in response to water stress during meiosis[J]. Journal of Plant Growth Regulation, 2007, 26(4): 318-328. |
[42] | Zhu X F, Zhu C Q, Zhao X S, Zheng S J, Shen R F. Ethylene is involved in root phosphorus remobilization in rice (Oryza sativa L.) by regulating cell-wall pectin and enhancing phosphate translocation to shoots[J]. Annals of Botany, 2016, 118(4): 645-653. |
[43] | Howe G A, Major I T, Koo A J. Modularity in jasmonate signaling for multistress resilience[J]. Annual Review of Plant Biology, 2018, 69: 387-415. |
[44] | Zou L, Qu M, Zeng L, Xiong G. The molecular basis of the interaction between Brassinosteroid induced and phosphorous deficiency induced leaf inclination in rice[J]. Plant Growth Regulation, 2020, 91(2): 263-276. |
[45] | Muzaffar A, Chen Y S, Lee H T, Wu C C, Le T T, Liang J Z, Lu C H, Balasubramaniam H, Lo S F, Yu L C, Chan C H, Chen K T, Lee M H, Hsing Y I, Ho T D, Yu S M. A newly evolved rice-specific gene JAUP1 regulates jasmonate biosynthesis and signalling to promote root development and multi-stress tolerance[J]. Plant Biotechnology Journal, 2024, 22(5): 1417-1432 |
[46] | Chen Y, Jin G, Liu M, Wang L, Lou Y, Baldwin I, Li R. Multiomic analyses reveal key sectors of jasmonate- mediated defense responses in rice[J]. The Plant Cell, 2024, 36(9): 3362-3377. |
[47] | 王黎明, 杨瑞珍, 孙加强. 油菜素内酯调控作物农艺性状和非生物胁迫响应的研究进展[J]. 生物工程学报, 2022, 38(1): 34-49. |
Wang L M, Yang R Z, Sun J Q. Regulation of crop agronomic traits and abiotic stress responses by brassinosteroids: A review[J]. Chinese Journal of Biotechnology, 2022, 38(1): 34-49. (in Chinese with English abstract) | |
[48] | Gupta A, Rico-Medina A, Caño-Delgado A I. The physiology of plant responses to drought[J]. Science, 2020, 368(6488): 266-269. |
[49] | Sun H, Li W, Burritt D J, Tian H, Zhang H, Liang X, Miao Y, Mostofa M G, Tran L P. Strigolactones interact with other phytohormones to modulate plant root growth and development[J]. The Crop Journal, 2022, 10(6): 1517-1527. |
[50] | Li L, Ge S, He L, Liu R, Mei Y, Xia X, Yu J, Zhou Y. SlDELLA interacts with SlPIF4 to regulate arbuscular mycorrhizal symbiosis and phosphate uptake in tomato[J]. Horticulture Research, 2024, 11(9): uhae195. |
[51] | Yuan K, Zhang H, Yu C, Luo N, Yan J, Zheng S, Wang B. Low phosphorus promotes NSP1-NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice[J]. Molecular Plant, 2023, 16(11): 1811-1831. |
[1] | WU Jinshui, TANG Jiangying, TAN Li, GUO Zhiqiang, YANG Juan, ZHANG Xinzhen, CHEN Guifang, WANG Jianlong, SHI Wanju. Mechanisms of Arsenic Uptake and Transport in Rice and Agronomic Mitigation Strategies [J]. Chinese Journal OF Rice Science, 2025, 39(2): 143-155. |
[2] | MA Weiyi, ZHU Jizou, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, DIAO Liuyun, WANG Lulu, MENG Tianyao, GAO Pinglei, CHEN Yinglong, DAI Qigen, WEI Huanhe. Research Progress in Effects of Salt and Drought Stresses on Rice Quality Formation and Associated Physiological Mechanisms [J]. Chinese Journal OF Rice Science, 2025, 39(2): 156-170. |
[3] | ZHANG Laitong, YANG Le, LIU Hong, ZHAO Xueming, CHENG Tao, XU Zhenjiang. Research Advances of Fragrance Substances in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(2): 171-186. |
[4] | FENG Tao, ZHANG Zhaoyang, HUANG Xinni, WANG Yue, ZHONG Xuzhi, FENG Zhiming, LIU Xin, ZUO Shimin, OUYANG Shouqiang. Osa-miR166i-3 Positively Regulates Resistance to Sheath Blight Through Mediating the Accumulation of Reactive Oxygen Species [J]. Chinese Journal OF Rice Science, 2025, 39(2): 187-196. |
[5] | GONG Mengmeng, SONG Shufeng, QIU Mudan, DONG Hao, ZHANG Longhui, LI Lei, LI Bin, CHEN Weijun, LI Yixing, WANG Tiankang, LEI Dongyang, LI Li. Functional Characterization of Rice Leaf Color Gene OsClpP6 [J]. Chinese Journal OF Rice Science, 2025, 39(2): 197-208. |
[6] | YAN Ying, WANG Kai, ZHANG Lixia, HU Zejun, YE Junhua, YANG Hang, GU Chunjun, WU Shujun. Development of a New High-Quality and Multi-Resistant japonica Rice Variety, Huxianggeng 216, Through Molecular Pyramiding Breeding [J]. Chinese Journal OF Rice Science, 2025, 39(2): 209-219. |
[7] | TANG Chenghan, WANG Jingqing, CHEN Huizhe, ZHANG Yuping, XIANG Jing, ZHANG Yikai, WANG Zhigang, HUAI Yan, CHEN Jiafeng, WANG Yaliang. Effects of Hybrid Rice Seedling Quality in Drill-seeding Nursery on Grain Yield in Mechanical Transplanting [J]. Chinese Journal OF Rice Science, 2025, 39(2): 245-254. |
[8] | SHU Ao, XIE Jiaxin, CAO Wei, ZHOU Chuanming, LI Beilei, CHEN Jiaxin, LI Li, CAO Fangbo, CHEN Jiana, HUANG Min. Effect of Nitrogen Management Strategies on Yield and Grain Quality of High-quality Hybrid Mid-season Rice [J]. Chinese Journal OF Rice Science, 2025, 39(2): 255-263. |
[9] | SHAO Yafang, ZHU Dawei, ZHENG Xin, MOU Renxiang, ZHANG Linping, CHEN Mingxue. Development Status and Regional Differences of japonica Rice Quality in the Yangtze River Delta Region from 2002 to 2022 [J]. Chinese Journal OF Rice Science, 2025, 39(2): 264-276. |
[10] | SUI Jingjing, ZHAO Guilong, JIN Xin, BU Qingyun, TANG Jiaqi. Advances in Molecular and Physiological Mechanisms of Cold Tolerance Regulation of Rice at the Booting Stage [J]. Chinese Journal OF Rice Science, 2025, 39(1): 1-10. |
[11] | REN Ningning, SUN Yongjian, SHEN Congcong, ZHU Shuangbing, LI Huiju, ZHANG Zhiyuan, CHEN Kai. Research Progress in Rice Mesocotyl [J]. Chinese Journal OF Rice Science, 2025, 39(1): 11-23. |
[12] | XIAO Wuwei, ZHU Chenguang, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui. Research Progress in Rice Quality of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 33-46. |
[13] | CHEN Zhihui, TAO Yajun, FAN Fangjun, XU Yang, WANG Fangquan, LI Wenqi, GULINAER·Bahetibieke , JIANG Yanjie, ZHU Jianping, LI Xia, YANG Jie. Development and Application of a Functional Marker for Heading Date Gene Hd6 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 47-54. |
[14] | HU Fengyue, WANG Jian, WANG Chun, WANG Kejian, LIU Chaolei. Generation of Rice DMP1, DMP2 and DMP3 Mutants and Identification of Their Haploid Induction Ability [J]. Chinese Journal OF Rice Science, 2025, 39(1): 55-66. |
[15] | YANG Chuanming, WANG Lizhi, ZHANG Xijuan, YANG Xianli, WANG Yangyang, HOU Benfu, CUI Shize, LI Qingchao, LIU Kai, MA Rui, FENG Yanjiang, LAI Yongcai, LI Hongyu, JIANG Shukun. Analysis of QTL Controlling Cold Tolerance at Seedling Stage by Using a High-Density SNP Linkage Map in japonica Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 82-91. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||