
Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (2): 187-196.DOI: 10.16819/j.1001-7216.2025.240107
• Research Papers • Previous Articles Next Articles
FENG Tao1,2,#, ZHANG Zhaoyang2,#, HUANG Xinni1, WANG Yue1, ZHONG Xuzhi1, FENG Zhiming3, LIU Xin3, ZUO Shimin3,*(
), OUYANG Shouqiang1,2,*(
)
Received:2024-01-14
Revised:2024-02-28
Online:2025-03-10
Published:2025-03-19
Contact:
ZUO Shimin, OUYANG Shouqiang
About author:#These authors contributed equally to this work
冯涛1,2,#, 张朝阳2,#, 黄新妮1, 王月1, 钟旭志1, 冯志明3, 刘欣3, 左示敏3,*(
), 欧阳寿强1,2,*(
)
通讯作者:
左示敏,欧阳寿强
作者简介:#共同第一作者
基金资助:FENG Tao, ZHANG Zhaoyang, HUANG Xinni, WANG Yue, ZHONG Xuzhi, FENG Zhiming, LIU Xin, ZUO Shimin, OUYANG Shouqiang. Osa-miR166i-3 Positively Regulates Resistance to Sheath Blight Through Mediating the Accumulation of Reactive Oxygen Species[J]. Chinese Journal OF Rice Science, 2025, 39(2): 187-196.
冯涛, 张朝阳, 黄新妮, 王月, 钟旭志, 冯志明, 刘欣, 左示敏, 欧阳寿强. Osa-miR166i-3p介导活性氧积累途径正调控水稻纹枯病抗性[J]. 中国水稻科学, 2025, 39(2): 187-196.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.240107
| 引物 Primer | 序列 Sequence(5’-3’) | 引物用途 Usage | |
|---|---|---|---|
| OsmiR166KO F | GCCGATTGAGAGAGATAGGTGTT | 构建Osa-miR166i-3p敲除载体 | |
| OsmiR166KO R | AAACAACACCTATCTCTCTCAAT | Constructing a knockout vector for Osa-miR166i-3p | |
| OsmiR166OE F | GATATCCGTTGTGGTCGTAACCTTCT GCACTAGGTACC | 构建Osa-miR166i-3p过表达载体 Constructing an overexpression vector for Osa-miR166i-3p | |
| OsmiR166OE R | CTCGAAGTAAGGAATGAGCCGCTCG ACCTGCAGGTACC | ||
| OsmiR166 Fq | CGTTAGCTTTGCCTTTTGTT | 转基因及对照植株中Osa-miR166i-3p表达 | |
| OsmiR166 Rq | GGGCTGGTTTCACTTTCATA | Expression of Osa-miR166i-3p in transgenic and control plants | |
| OsmiR166 RT | GTCGTATCCAGTGCAGGGTCCGAGG TATTCGCACTGGATACGACGAGGAA | 水稻基因组DNA反转录为Osa-miR166i-3p Reverse transcription of rice genomic DNA into Osa-miR166i-3p | |
| OsmiR166-F | GCGGCGGTCGGATCAGGCTTCA | ||
| Universal primer | GTGCAGGGTCCGAGGT | ||
| Os18S rRNA F | CTACGTCCCTGCCCTTTGTACA | 差异表达基因水平检测的内参基因 | |
| Os18S rRNA R | ACACTTCACCGGACCATTCAA | Internal reference genes for detection of differentially expressed gene levels | |
| Os06g35520 Fq | GATTGCTTCGTCAATGGATG | 转录组测序中差异表达基因表达水平检测 Detection of differentially expressed gene levels in transcriptome sequencing | |
| Os06g35520 Rq | GCCTCCACCTGCGTCTTGAT | ||
| Os01g73200 Fq | ACTTCCACGACTGCTTCGTC | ||
| Os01g73200 Rq | GGAGCAGGACACGACGGTGT | ||
| Os07g47990 Fq | AGTCCTGTTGCTCTTGTGTC | ||
| Os07g47990 Rq | AAGCAGTCATGGAAGTGAAG | ||
| Os12g02080 Fq | AGCTTCTACTCGTACTCGTG | ||
| Os12g02080 Rq | GATGGCGTCGATCACCTCAA | ||
Table 1. Primers used in this study.
| 引物 Primer | 序列 Sequence(5’-3’) | 引物用途 Usage | |
|---|---|---|---|
| OsmiR166KO F | GCCGATTGAGAGAGATAGGTGTT | 构建Osa-miR166i-3p敲除载体 | |
| OsmiR166KO R | AAACAACACCTATCTCTCTCAAT | Constructing a knockout vector for Osa-miR166i-3p | |
| OsmiR166OE F | GATATCCGTTGTGGTCGTAACCTTCT GCACTAGGTACC | 构建Osa-miR166i-3p过表达载体 Constructing an overexpression vector for Osa-miR166i-3p | |
| OsmiR166OE R | CTCGAAGTAAGGAATGAGCCGCTCG ACCTGCAGGTACC | ||
| OsmiR166 Fq | CGTTAGCTTTGCCTTTTGTT | 转基因及对照植株中Osa-miR166i-3p表达 | |
| OsmiR166 Rq | GGGCTGGTTTCACTTTCATA | Expression of Osa-miR166i-3p in transgenic and control plants | |
| OsmiR166 RT | GTCGTATCCAGTGCAGGGTCCGAGG TATTCGCACTGGATACGACGAGGAA | 水稻基因组DNA反转录为Osa-miR166i-3p Reverse transcription of rice genomic DNA into Osa-miR166i-3p | |
| OsmiR166-F | GCGGCGGTCGGATCAGGCTTCA | ||
| Universal primer | GTGCAGGGTCCGAGGT | ||
| Os18S rRNA F | CTACGTCCCTGCCCTTTGTACA | 差异表达基因水平检测的内参基因 | |
| Os18S rRNA R | ACACTTCACCGGACCATTCAA | Internal reference genes for detection of differentially expressed gene levels | |
| Os06g35520 Fq | GATTGCTTCGTCAATGGATG | 转录组测序中差异表达基因表达水平检测 Detection of differentially expressed gene levels in transcriptome sequencing | |
| Os06g35520 Rq | GCCTCCACCTGCGTCTTGAT | ||
| Os01g73200 Fq | ACTTCCACGACTGCTTCGTC | ||
| Os01g73200 Rq | GGAGCAGGACACGACGGTGT | ||
| Os07g47990 Fq | AGTCCTGTTGCTCTTGTGTC | ||
| Os07g47990 Rq | AAGCAGTCATGGAAGTGAAG | ||
| Os12g02080 Fq | AGCTTCTACTCGTACTCGTG | ||
| Os12g02080 Rq | GATGGCGTCGATCACCTCAA | ||
Fig. 1. Expression level of Osa-miR166i-3p was suppressed by R. solani infection A, Symptoms of Xudao 3 and YSBR1 infected by R. solani. B, Lesion length of Xudao 3 and YSBR1 at different days after R. solani infection. C, Northern Blot of Osa-miR166i-3p. The sheath tissues of Xudao 3 and YSBR1 infected by R. solani at 5, 10, and 20 hours were designated as XT5, XT10, XT20 and YT5, YT10, YT20, respectively. The sheath tissues of Xudao 3 and YSBR1 treated with water at 5, 10, and 20 hours were designated as XC5, XC10, XC20 and YC5, YC10, YC20, respectively.
Fig. 2. Generation and expression analysis of Osa-miR166i-3p transgenic lines A, Sequencing results of Osa-miR166i-3p knockout lines. Blue box represents predicted protospacer adjacent motifs (PAM), and red boxes represent mature miRNA sequence. B, Relative expression levels of Osa-miR166i-3p in overexpression(OE_1-OE_4) and knockout lines(KO_1-KO_4). Error bars represent SD, n=3. Different lowercase letters indicate significant difference (P<0.05).
Fig. 3. Overexpression of Osa-miR166i-3p enhances sheath blight resistance of Xudao 3 A, Lesion of Osa-miR166i-3p lines as compared to Xudao 3 at 5, 10, 15 day after infection by R. solani. Bars=10 cm. B and C, Lesion length of Osa-miR166i-3p_OE(B) and Osa-miR166i-3p_KO(C) as compared to Xudao 3 at 5, 10,15 days after infection by R. solani. Error bars represent SD, n=20, Different lowercase letters indicate significant difference (P<0.05).
Fig. 4. Comparison of main agronomic traits of Osa-miR166i-3p lines and Xudao 3 A-E, Plant height(A), panicle length(B), No. of primary branches per panicle(C), panicle number(D) and 1000-grain weight(E) of Osa-miR166i-3p_OE, Osa-miR166i-3p_KO and Xudao 3. Error bars represent SD, n=20; Common lowercase letters indicate no significant difference (P≥0.05). F and G, Photograph of panicle length (F) and No. of primary branches per panicle (G) of Osa-miR166i-3p_OE, Osa-miR166i-3p_KO and Xudao 3. H, Photograph of plant height of Osa-miR166i-3p_OE and Xudao 3. I, Photograph of plant height of Osa-miR166i-3p_KO and Xudao 3.
Fig. 5. Transcriptome analysis of Osa-miR166i-3p_OE lines for differentially expressed genes KEGG enrichment analysis of differentially expressed genes in the Osa-miR166i-3p overexpression lines infected by R. solani at 8 h and 16 h.
Fig. 6. Expression levels of multiple peroxidase related genes induced by R. solani in the Osa-miR166i-3p _OE lines A, Number of differentially expressed genes in Osa-miR166i-3p_OE lines infected by R. solani at 0 h, 8 h, and 16 h. B, Relative expression level of Os07g47990, Os01g73200, Os06g35520 and Os12g02080 in Osa-miR166i-3p_OE lines infected by R. solani at 0 h, 8 h, and 16 h.
| [1] | Taheri P, Tarighi S. Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani[J]. European Journal of Plant Pathology, 2011, 129: 511-528. |
| [2] | Zhang C Q, Liu Y H, Ma X Y, Feng Z, Ma Z H. Characterization of sensitivity of Rhizoctonia solani, causing rice sheath blight, to mepronil and boscalid[J]. Crop Protection, 2009, 28(5): 381-386. |
| [3] | Margani R, Hadiwiyono, Widadi S. Utilizing bacillus to inhibit the growth and infection by sheath blight pathogen, Rhizoctonia solani in rice[J]. IOP Conference Series: Earth and Environmental Science, 2018, 142(1): 012070. |
| [4] | Taheri P, Gnanamanickam S, Hofte M. Characterization, genetic structure, and pathogenicity of Rhizoctonia spp. associated with rice sheath diseases in India[J]. Phytopathology, 2007, 97(3): 373-383. |
| [5] | Jasrotia S, Salgotra R K, Sharma M. Efficacy of bioinoculants to control of bacterial and fungal diseases of rice (Oryza sativa L.) in northwestern Himalaya[J]. Brazilian Journal of Microbiology, 2021, 52(2): 687-704. |
| [6] | Ma Y, Wang Y R, He Y H, Ding Y Y, An J X, Zhang Z J, Zhao W B, Hu Y M, Liu Y Q. Drug repurposing strategy part 1: From approved drugs to agri-bactericides leads[J]. The Journal of Antibiotics, 2023, 76(1): 27-51. |
| [7] | Qi P, Wang N, Zhang T, Feng Y, Zhou X, Zeng D, Meng J, Liu L, Jin L, Yang S. Anti-virulence strategy of novel dehydroabietic acid derivatives: Design, synthesis, and antibacterial evaluation[J]. International Journal of Molecular Sciences, 2023, 24(3): 2897-2913. |
| [8] | Ontoy J C, Shrestha B, Karki H S, Barphagha I, Angira B, Famoso A, Ham J H. Genetic characterization of the partial disease resistance of rice to bacterial panicle blight and sheath blight by combined QTL linkage and QTL-seq analyses[J]. Plants, 2023, 12(3): 559-577. |
| [9] | Zuo S M, Zhang L, Wang H, Yin Y J, Zhang Y F, Chen Z X, Ma Y Y, Pan X B. Prospect of the QTL-qSB-9TQ utilized in molecular breeding program of japonica rice against sheath blight[J]. Journal of Genetics and Genomics, 2008, 35(8): 499-505. |
| [10] | Tan C X, Ji X M, Yang Y, Pan X Y, Zuo S M, Zhang Y F, Zou J H, Chen Z X, Zhu L H, Pan X B. Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations[J]. Journal of Genetics and Genomics, 2005, 32(4): 399-405. |
| [11] | Channamallikarjuna V, Sonah H, Prasad M, Rao G J N, Chand S, Upreti H C, Singh N K, Sharma T R. Identification of major quantitative trait loci qSBR11-1 for sheath blight resistance in rice[J]. Molecular Breeding, 2010, 25(1): 155-166. |
| [12] | 陈燕玲, 岑光莉, 孙婷婷, 尤垂淮, 阙友雄, 苏亚春. 植物几丁质酶和β-1,3-葡聚糖酶及其协同抗病性研究进展[J]. 农业生物技术学报, 2022, 30(7): 1394-1411. |
| Chen Y L, Cen G L, Sun T T, You C H, Que Y X, Su Y C. Progress on plant chitinase and β-1, 3-glucanase and their synergistic function in disease resistance[J]. Journal of Agricultural Biotechnology, 2022, 30(7): 1394-1411. (in Chinese with English abstract) | |
| [13] | Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice[J]. Planta, 2012, 236(5): 1485-1498. |
| [14] | Peng X, Wang H, Jang J C, Xiao T, He H, Jiang D, Tang X. OsWRKY80-OsWRKY4 module as a positive regulatory circuit in rice resistance against Rhizoctonia solani[J]. Rice, 2016, 9(1): 63-77. |
| [15] | Borges F, Martienssen R A. The expanding world of small RNAs in plants[J]. Nature Reviews Molecular Cell Biology, 2015, 16(12): 727-741. |
| [16] | Palatnik J F, Allen E, Wu X, Schommer C, Schwab R, Carrington J C, Weigel D. Control of leaf morphogenesis by microRNAs[J]. Nature, 2003, 425(6955): 257-263. |
| [17] | Weiberg A, Wang M, Lin F M, Zhao H, Zhang Z, Kaloshian I, Huang H D, Jin H. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways[J]. Science, 2013, 342(6154): 118-123. |
| [18] | Sunkar R, Chinnusamy V, Zhu J, Zhu J K. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation[J]. Trends in Plant Science, 2007, 12(7): 301-309. |
| [19] | Wang Z, Xia Y, Lin S, Wang Y, Guo B, Song X, Ding S, Zheng L, Feng R, Chen S, Bao Y, Sheng C, Zhang X, Wu J, Niu D, Jin H, Zhao H. Osa-miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. The Plant Journal, 2018, 95(4): 584-597. |
| [20] | Feng T, Zhang Z Y, Gao P, Feng Z M, Zuo S M, Ouyang S Q. Suppression of rice Osa-miR444.2 improves the resistance to sheath blight in rice mediating through the phytohormone pathway[J]. International Journal of Molecular Sciences, 2023, 24(4): 3653-3665. |
| [21] | Qiao L, Zheng L, Sheng C, Zhao H, Jin H, Niu D. Rice siR109944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis[J]. The Plant Journal, 2020, 102(5): 948-964. |
| [22] | Cao W L, Cao X X, Zhao J H, Zhang Z Y, Feng Z M, Ouyang S Q, Zuo S M. Comprehensive characteristics of microRNA expression profile conferring to Rhizoctonia solani in rice[J]. Mathematical Research Letters, 2020, 27(2): 101-112. |
| [23] | Ho T T, Zhou N, Huang J, Koirala P, Xu M, Fung R, Wu F, Mo Y Y. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines[J]. Nucleic Acids Research, 2015, 43(3): 17-28. |
| [24] | 贺闽, 尹俊杰, 冯志明, 朱孝波, 赵剑华, 左示敏, 陈学伟. 水稻稻瘟病和纹枯病抗性鉴定方法[J]. 植物学报, 2020, 55(5): 577-587. |
| He M, Yin J J, Feng Z M, Zhu X B, Zhao J H, Zuo S M, Chen X W. Methods for evaluation of rice resistance to blast and sheath blight diseases[J]. Chinese Bulletin of Botany, 2020, 55(5): 577-587. (in Chinese with English abstract) | |
| [25] | Robinson M D, McCarthy D J, Smyth G K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data[J]. Bioinformatics, 2010, 26(1): 139-140. |
| [26] | Li Y, Li T T, He X R, Zhu Y, Feng Q, Yang X M, Zhou X H, Li G B, Ji Y P, Zhao J H, Zhao Z X, Pu M, Zhou S X, Zhang J W, Huang Y Y, Fan J, Wang W M. Blocking Osa- miR1871 enhances rice resistance against Magnaporthe oryzae and yield[J]. Plant Biotechnology Journal, 2022, 20(4): 646-659. |
| [27] | Zhao Y T, Wang M, Wang Z M, Fang R X, Wang X J, Jia Y T. Dynamic and coordinated expression changes of rice small RNAs in response to Xanthomonas oryzae pv. oryzae[J]. Journal of Genetics and Genomics, 2015, 42(11): 625-637. |
| [28] | Zhang J, Zhang H, Srivastava A K, Pan Y, Bai J, Fang J, Shi H, Zhu J K. Knockdown of rice MicroRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development[J]. Plant Physiology, 2018, 176(3): 2082-2094. |
| [29] | Ding Y, Gong S, Wang Y, Wang F, Bao H, Sun J, Cai C, Yi K, Chen Z, Zhu C. MicroRNA166 modulates cadmium tolerance and accumulation in rice[J]. Plant Physiology, 2018, 177(4): 1691-1703. |
| [30] | Tognolli M, Penel C, Greppin H, Simon P. Analysis and expression of the class Ⅲ peroxidase large gene family in Arabidopsis thaliana[J]. Gene, 2002, 288(1): 129-138. |
| [31] | Passardi F, Cosio C, Penel C, Dunand C. Peroxidases have more functions than a Swiss army knife[J]. Plant Cell Reports, 2005, 24(5): 255-265. |
| [32] | Liu X, Zhang Z. A double-edged sword: reactive oxygen species (ROS) during the rice blast fungus and host interaction[J]. The FEBS Journal, 2022, 289(18): 5505-5515. |
| [33] | O'Brien J A, Daudi A, Finch P, Butt V S, Whitelegge J P, Souda P, Ausubel F M, Paul B G. A peroxidase-dependent apoplastic oxidative burst in cultured Arabidopsis cells functions in MAMP-elicited defense[J]. Plant Physiology, 2012, 158(4): 2013-2027. |
| [34] | Zhao L, Phuong L T, Luan M T, Fitrianti A N, Matsui H, Nakagami H, Noutoshi Y, Yamamoto M, Ichinose Y, Shiraishi T, Toyoda K. A class Ⅲ peroxidase PRX34 is a component of disease resistance in Arabidopsis[J]. Journal of General Plant Pathology, 2019, 85(4):1-8. |
| [35] | Wally O, Punja Z K. Enhanced disease resistance in transgenic carrot (Daucus carota L.) plants over- expressing a rice cationic peroxidase[J]. Planta, 2010, 232(5): 1229-1239. |
| [1] |
LU Yezi, QIU Jiehua, JIANG Nan, KOU Yanjun, SHI Huanbin.
Research Progress in Effectors of Magnaporthe oryzae [J]. Chinese Journal OF Rice Science, 2025, 39(3): 287-294. |
| [2] |
WANG Chaorui, ZHOU Yukun, WEN Ya, ZHANG Ying, FA Xiaotong, XIAO Zhilin, ZHANG Hao.
Effects of Straw Returning Methods on Soil Characteristics and Greenhouse Gas Emissions in Paddy Fields and Their Regulation Through Water-fertilizer Interactions [J]. Chinese Journal OF Rice Science, 2025, 39(3): 295-305. |
| [3] |
WANG Yaxuan, WANG Xinfeng, YANG Houhong, LIU Fang, XIAO Jing, CAI Yubiao, WEI Qi, FU Qiang, WAN Pinjun.
Recent Advances in Mechanisms of Adaptation of Planthoppers to Rice Resistance [J]. Chinese Journal OF Rice Science, 2025, 39(3): 306-321. |
| [4] |
HUANG Tao, WEI Zhaogen, CHENG Qi, CHENG Ze, LIU Xin, WANG Guangda, HU Keming, XIE Wenya, CHEN Zongxiang, FENG Zhiming, ZUO Shimin.
Gene |
| [5] |
MA Shunting, HU Yungao, GAO Fangyuan, LIU Liping, MOU Changling, LÜ Jianqun, SU Xiangwen, LIU Song, LIANG Yuyu, REN Guangjun, GUO Hongming.
Functional Study of Rice Eukaryotic Translation Initiation Factor OseIF6.2 in Grain Size Regulation [J]. Chinese Journal OF Rice Science, 2025, 39(3): 331-342. |
| [6] |
ZHANG Bintao, LIU Congcong, GUO Mingliang, YANG Shaohua, WU Shiqiang, GUO Longbiao, ZHU Yiwang.
Evaluation of Blast Resistance and Identification of Superior Haplotype of OsDR8 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(3): 343-351. |
| [7] |
WEI Xinyu, ZENG Yuehui, XIAO Changchun, HUANG Jianhong, RUAN Hongchun, YANG Wangxing, ZOU Wenguang, XU Xuming.
Cloning and Functional Verification of Rice-Blast Resistance Gene Pi-kf2(t) in Kangfeng B [J]. Chinese Journal OF Rice Science, 2025, 39(3): 352-364. |
| [8] |
LI Wenqi, XU Yang, WANG Fangquan ZHU Jianping, TAO Yajun, LI Xia, FAN Fangjun, JIANG Yanjie, CHEN Zhihui, YANG Jie.
Development and Application of KASP Marker for Broad-Spectrum Resistance Gene PigmR to Rice Blast [J]. Chinese Journal OF Rice Science, 2025, 39(3): 365-372. |
| [9] |
WEI Huanhe, WANG Lulu, MA Weiyi, ZHANG Xiang, ZUO Boyuan, GENG Xiaoyu, ZHU Wang, ZHU Jizou, MENG Tianyao, CHEN Yinglong, GAO Pinglei, XU Ke, DAI Qigen.
Grain-filling Characteristics and Its Relationship with Grain Yield Formation of japonica Rice Nanjing 9108 Under Combined Salinity-drought Stress [J]. Chinese Journal OF Rice Science, 2025, 39(3): 373-386. |
| [10] |
ZHANG Haiwei, GU Xinyi, CHEN Mingshuai, LI Fukang, SHI Yuecheng, YANG Ting, JIANG Shuochen.
Effects of Nitrogen Type of Basal Fertilizer on Growth, Grain Yield and Nitrogen Use Efficiency of Ratooning Rice [J]. Chinese Journal OF Rice Science, 2025, 39(3): 387-398. |
| [11] |
SHEN Zhida, YU Qiuhua, ZHANG Bin, CAO Yudong, WANG Shaohua, WANG Hongfei, WU Yongqing, DAI Zhigang, LI Xiaokun.
Effects of Phosphorus Fertilizer Application Rate on Grain Yield, Phosphorus Accumulation and Utilization of Direct-seeded Rice in Hubei Province [J]. Chinese Journal OF Rice Science, 2025, 39(3): 399-411. |
| [12] |
HE Yong, ZHANG Shiqian, WANG Zhicheng, ZHAN Xiaokang, DING Yike, LIU Xiaorui, MA Susu, TIAN Zhihong.
Synergistic Impact of Piriformospora indica and Compound Fertilizer on Rice Seedling Quality for Mechanical Transplanting [J]. Chinese Journal OF Rice Science, 2025, 39(3): 412-422. |
| [13] | WU Jinshui, TANG Jiangying, TAN Li, GUO Zhiqiang, YANG Juan, ZHANG Xinzhen, CHEN Guifang, WANG Jianlong, SHI Wanju. Mechanisms of Arsenic Uptake and Transport in Rice and Agronomic Mitigation Strategies [J]. Chinese Journal OF Rice Science, 2025, 39(2): 143-155. |
| [14] | MA Weiyi, ZHU Jizou, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, DIAO Liuyun, WANG Lulu, MENG Tianyao, GAO Pinglei, CHEN Yinglong, DAI Qigen, WEI Huanhe. Research Progress in Effects of Salt and Drought Stresses on Rice Quality Formation and Associated Physiological Mechanisms [J]. Chinese Journal OF Rice Science, 2025, 39(2): 156-170. |
| [15] | ZHANG Laitong, YANG Le, LIU Hong, ZHAO Xueming, CHENG Tao, XU Zhenjiang. Research Advances of Fragrance Substances in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(2): 171-186. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||