Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (1): 11-23.DOI: 10.16819/j.1001-7216.2025.240504
• Reviews and Special Topics • Previous Articles Next Articles
REN Ningning1, SUN Yongjian2, SHEN Congcong1, ZHU Shuangbing1, LI Huiju1, ZHANG Zhiyuan1, CHEN Kai1,*()
Received:
2024-05-06
Revised:
2024-08-07
Online:
2025-01-10
Published:
2025-01-14
Contact:
CHEN Kai
任宁宁1, 孙永建2, 申聪聪1, 朱双兵1, 李慧菊1, 张志远1, 陈凯1,*()
通讯作者:
陈凯
基金资助:
REN Ningning, SUN Yongjian, SHEN Congcong, ZHU Shuangbing, LI Huiju, ZHANG Zhiyuan, CHEN Kai. Research Progress in Rice Mesocotyl[J]. Chinese Journal OF Rice Science, 2025, 39(1): 11-23.
任宁宁, 孙永建, 申聪聪, 朱双兵, 李慧菊, 张志远, 陈凯. 水稻中胚轴研究进展[J]. 中国水稻科学, 2025, 39(1): 11-23.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.240504
基因名称 Gene name | 方法 Method | 材料 Material | 参考文献 Reference |
---|---|---|---|
OsIAA18 | 基于DNA-Seq的BSA测 序分析 DNA-Seq-based BSA sequencing analysis | 鄂中4号(长中胚轴)和华航31(短中胚轴) 构建的F2群体 F2 population derived from E Zhong 4 (long mesocotyl) and Huahang 31(short mesocotyl) | [ |
OsML1, OsML2 | GWAS | 3K RGP(Rice Genome Project)中的621份栽培水稻材料 621 cultivated rice materials from the 3K RGP(Rice Genome Project) | [ |
Os01g0392100, Os04g0630000, Os01g0904700, Os01g0904700 | GWAS | 24份长中胚轴材料和28份短中胚轴材料(籼稻) 24 samples with long mesocotyl and 28 materials with short mesocotyl (indica rice) | [ |
SD1 | 图位克隆 Map cloning | T65(不耐深水品种)背景下C9285(深水品种) 的近等基因系(NIL) Near-isogenic lines of C9285(deep-water tolerance) in the background of T65(deep-water intolerance) | [ |
qME1 | 图位克隆 Map cloning | NIL-ME1(长中胚轴,在Nip背景下携带来自Kasalath的ME1位点染色体片段)作为亲本与日本晴杂交构建的839份F2群体 NIL-ME1(long mesocotyl, carrying a ME1 locus from Kasalath in the Nipponbare background) was used as a parent to construct an F2 population consisting of 839 individuals with Nipponbare | [ |
OsGSK2 | GWAS | 非洲栽培稻CG14为供体亲本,粳稻品种WYJ为循环亲本的CSSL系 CSSLs with African cultivated rice CG14 as the donor parent and japonica rice WYJ as the circulating parent | [ |
OsPAO5 | CRISPR/Cas9 | 日本晴 Nipponbare | [ |
LOC_Os07g24090.1 | GWAS | 3K种质资源中的165份材料 165 materials from 3K germplasm resources | [ |
OsGRF3 | GWAS | 170份水稻微核心种质、100份节水抗旱育种材料 170 rice microcore accessions and 100 rice water-saving and drought-resistant breeding materials | [ |
LOC_Os01g09100, LOC_Os07g03120, LOC_Os09g37600 | GWAS | 294份RDP1(Rice Diversity Panel 1)材料、Huhan 7A和Hanhui 3构建的312份RIL群体 294 RDP1(Rice Diversity Panel 1) materials, a RIL population with 312 individuals constructed using Huhan 7A and Hanhui 3 | [ |
CYCU2;1(LOC_Os04g46660) | 农杆菌转化法 Agrobacterium- transformation method | 日本晴Nipponbare | [ |
OsMsc8 | 农杆菌转化法 Agrobacterium- transformation method | 日本晴Nipponbare | [ |
LOC_Os03g50550 | 复合区间定位 Composite interval positioning (CIM) | SN265和LTH构建的144份RIL群体 RIL population with 144 individuals constructed with SN265 and LTH | [ |
Os01g0269800, Os01g0731100, Os08g0136700, Os08g0137800, Os08g0137900 | GWAS | 韩国农村发展管理局的137份水稻材料 137 rice materials from the Korea Rural Development Administration | [ |
LOC_Os02g17680, LOC_Os04g56950 | 混合线性模型 Mixed linear model | 331份Trop群体(粳)、470份Indx群体(籼) Trop population with 331 individuals (japonica), Indx population with 470 individuals (indica) | [ |
Table 1. Cloning and localization of genes related to mesocotyl elongation
基因名称 Gene name | 方法 Method | 材料 Material | 参考文献 Reference |
---|---|---|---|
OsIAA18 | 基于DNA-Seq的BSA测 序分析 DNA-Seq-based BSA sequencing analysis | 鄂中4号(长中胚轴)和华航31(短中胚轴) 构建的F2群体 F2 population derived from E Zhong 4 (long mesocotyl) and Huahang 31(short mesocotyl) | [ |
OsML1, OsML2 | GWAS | 3K RGP(Rice Genome Project)中的621份栽培水稻材料 621 cultivated rice materials from the 3K RGP(Rice Genome Project) | [ |
Os01g0392100, Os04g0630000, Os01g0904700, Os01g0904700 | GWAS | 24份长中胚轴材料和28份短中胚轴材料(籼稻) 24 samples with long mesocotyl and 28 materials with short mesocotyl (indica rice) | [ |
SD1 | 图位克隆 Map cloning | T65(不耐深水品种)背景下C9285(深水品种) 的近等基因系(NIL) Near-isogenic lines of C9285(deep-water tolerance) in the background of T65(deep-water intolerance) | [ |
qME1 | 图位克隆 Map cloning | NIL-ME1(长中胚轴,在Nip背景下携带来自Kasalath的ME1位点染色体片段)作为亲本与日本晴杂交构建的839份F2群体 NIL-ME1(long mesocotyl, carrying a ME1 locus from Kasalath in the Nipponbare background) was used as a parent to construct an F2 population consisting of 839 individuals with Nipponbare | [ |
OsGSK2 | GWAS | 非洲栽培稻CG14为供体亲本,粳稻品种WYJ为循环亲本的CSSL系 CSSLs with African cultivated rice CG14 as the donor parent and japonica rice WYJ as the circulating parent | [ |
OsPAO5 | CRISPR/Cas9 | 日本晴 Nipponbare | [ |
LOC_Os07g24090.1 | GWAS | 3K种质资源中的165份材料 165 materials from 3K germplasm resources | [ |
OsGRF3 | GWAS | 170份水稻微核心种质、100份节水抗旱育种材料 170 rice microcore accessions and 100 rice water-saving and drought-resistant breeding materials | [ |
LOC_Os01g09100, LOC_Os07g03120, LOC_Os09g37600 | GWAS | 294份RDP1(Rice Diversity Panel 1)材料、Huhan 7A和Hanhui 3构建的312份RIL群体 294 RDP1(Rice Diversity Panel 1) materials, a RIL population with 312 individuals constructed using Huhan 7A and Hanhui 3 | [ |
CYCU2;1(LOC_Os04g46660) | 农杆菌转化法 Agrobacterium- transformation method | 日本晴Nipponbare | [ |
OsMsc8 | 农杆菌转化法 Agrobacterium- transformation method | 日本晴Nipponbare | [ |
LOC_Os03g50550 | 复合区间定位 Composite interval positioning (CIM) | SN265和LTH构建的144份RIL群体 RIL population with 144 individuals constructed with SN265 and LTH | [ |
Os01g0269800, Os01g0731100, Os08g0136700, Os08g0137800, Os08g0137900 | GWAS | 韩国农村发展管理局的137份水稻材料 137 rice materials from the Korea Rural Development Administration | [ |
LOC_Os02g17680, LOC_Os04g56950 | 混合线性模型 Mixed linear model | 331份Trop群体(粳)、470份Indx群体(籼) Trop population with 331 individuals (japonica), Indx population with 470 individuals (indica) | [ |
[1] | 李珣, 苗立新, 刘忠卓, 姚洪军. 水稻直播技术的发展现状及研究进展[J]. 北方水稻, 2013, 43(1): 78-80. |
Li X, Miao L X, Liu Z Z, Yao H J. Development and advance on the technology of rice direct-sowing[J]. Northern Rice, 2013, 43(1): 78-80. (in Chinese with English abstract) | |
[2] | 罗锡文, 王在满, 曾山, 臧英, 杨文武, 张明华. 水稻机械化直播技术研究进展[J]. 华南农业大学学报, 2019, 40(5): 1-13. |
Luo X W, Wang Z, Zeng S, Zang Y, Yang W W, Zhang M H. Recent advances in mechanized direct seeding technology for rice[J]. Journal of South China Agricultural University, 2019, 40(5): 1-13. (in Chinese with English abstract) | |
[3] | 章清杞, 蔡来龙, 黄荣华, 程祖锌. 直播稻栽培技术研究进展[J]. 亚热带农业研究, 2020, 16(1): 1-7. |
Zhang Q Q, Cai L L, Huang R H, Cheng Z X. Research progress of direct seeding rice cultivation techniques[J]. Subtropical Agricultural Research, 2020, 16(1): 1-7. (in Chinese with English abstract) | |
[4] | 胡敦科, 刘木华, 陈雄飞, 余佳佳, 刘俊安, 刘兆朋. 水稻机械直播同步覆土技术装备研究现状及发展趋势[J]. 南方农机, 2021, 52(13): 1672-3872. |
Hu D K, Liu M H, Chen X F, Yu J J, Liu J A, Liu Z P. Research status and development trend of direct seeding synchronous soil covering technology and equipment for rice machinery[J]. Southern Agricultural Machinery, 2021, 52(13): 1672-3872. (in Chinese with English abstract) | |
[5] | 张光恒, 林建荣, 吴明国, 曹立勇, 程式华. 水稻出苗顶土动力源研究[J]. 中国水稻科学, 2005, 19(1): 59-62. |
Zhang G H, Lin J R, Wu M G, Cao L Y, Cheng S H. Analysis on germinating dynamic source of rice(Oryza sativa)[J]. Chinese Journal of Rice Science, 2005, 19(1): 59-62. (in Chinese with English abstract) | |
[6] | 林建荣, 张光恒, 吴明国, 曹立勇, 程式华. 水稻中胚轴伸长特性的遗传分析[J]. 作物学报, 2006, 32(2): 249-252. |
Lin J R, Zhang G H, Wu M G, Cao L Y, Cheng S H. Genetic analysis of mesocotyl elongation in rice (Oryza sativa L. subsp. japonica)[J]. Acta Agronomica Sinica, 2006, 32(2): 249-252. (in Chinese with English abstract) | |
[7] | 吕育松. 水稻中胚轴伸长基因qME1的克隆与功能分析[D]. 武汉: 华中农业大学, 2020. |
Lü Y S. Cloning and functional analysis of a major QTL qME1 for mesocotyl elongation of rice[D]. Wuhan: Huazhong Agricultural University, 2020. (in Chinese with English abstract) | |
[8] | 李益锋. 水稻种子的结构[EB/OL]. (2022-03-23)[2024-07-17]. https://www.renrendoc.com/paper/205814041.html. |
Li Y F. Structure of rice seeds[EB/OL]. (2022-03-23) [2024-07-17]. https://www.renrendoc.com/paper/205814041.html. (in Chinese) | |
[9] | 姜洁锋, 金林灿, 王利润. 水稻中胚轴伸长研究进展[J]. 江西农业学报, 2017, 29(12): 27-30. |
Jiang J F, Jin L C, Wang L R. Research progress in elongation of mesocotyl in rice[J]. Acta Agriculturae Jiangxi, 2017, 29(12): 27-30. (in Chinese with English abstract) | |
[10] | Chebli Y, Geitmann A. Cellular growth in plants requires regulation of cell wall biochemistry[J]. Current Opinion in Cell Biology, 2017, 44: 28-35. |
[11] | Schopfer P, Lapierre C, Nolte T. Light-controlled growth of the maize seedling mesocotyl: Mechanical cell-wall changes in the elongation zone and related changes in lignification[J]. Physiologia Plantarum, 2001, 111(1): 83-92. |
[12] | Niu L J, Wu Z K, Liu H, Wu X L, Wang W. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays[J]. BMC Genomics, 2019, 20(1): 758. |
[13] | Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Höfte H. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis[J]. The Plant Cell, 2000, 12(12): 2409-2424. |
[14] | Zhao X Q, Zhong Y, Shi J, Zhou W Q. 24-epibrassinolide confers tolerance against deep-seeding stress in Zea mays L. coleoptile development by phytohormones signaling transduction and their interaction network[J]. Plant Signaling & Behavior, 2021, 16(11): 1963583. |
[15] | Zhao X Q, Zhong Y, Zhou W Q. Molecular mechanisms of mesocotyl elongation induced by brassinosteroid in maize under deep-seeding stress by RNA-sequencing, microstructure observation, and physiological metabolism[J]. Genomics, 2021, 113(6): 3565-3581. |
[16] | Zhao X Q, Niu Y N, Bai X D, Mao T T. Transcriptomic and metabolic profiling reveals a lignin metabolism network involved in mesocotyl elongation during maize seed germination[J]. Plants, 2022, 11(8): 1034. |
[17] | 李莉, 马殿荣, 孙健, 梁茜, 陈温福. 杂草稻中胚轴伸长的细胞形态学观察[J]. 沈阳农业大学学报, 2012, 43(6): 749-753. |
Li L, Ma D R, Sun J, Liang Q, Chen W F. Observation of mesocotyl cell morphology of weedy rice[J]. Journal of Shenyang Agricultural University, 2012, 43(6): 749-753. (in Chinese with English abstract) | |
[18] | Zhang K Y, Pan J S, Chen Y, Wei Y, Du H, Sun J X, Lyu D, Wen H F, He H L, Wang G, Cai R. Mapping and identification of CsSh5.1, a gene encoding a xyloglucan galactosyltransferase required for hypocotyl elongation in cucumber (Cucumis sativus L.)[J]. Theoretical and Applied Genetics, 2021, 134(4): 979-991. |
[19] | Miedes E, Suslov D, Vandenbussche F, Kenobi K, Ivakov A, Van Der Straeten D, Lorences E P, Mellerowicz E J, Verbelen J P, Vissenberg K. Xyloglucan endotransglucosylase/hydrolase (XTH) overexpression affects growth and cell wall mechanics in etiolated Arabidopsis hypocotyls[J]. Journal of Experimental Botany, 2013, 64(8): 2481-2497. |
[20] | 牛世朋. 水稻中胚轴伸长的QTL定位和编辑微管相关基因OsMAP1[D]. 北京: 中国农业科学院, 2019. |
Niu S P. QTLs mapping for mesocotyl length in rice and editing the microtubule-associated gene OsMAP1[D]. Beijing: Chinese Academy of Agricultural Sciences, 2019. (in Chinese with English abstract) | |
[21] | 梁茜. 微管骨架在北方杂草稻中胚轴伸长过程中的作用及其机制[D]. 沈阳: 沈阳农业大学, 2016. |
Liang Q. The role of microtubule cytoskeleton on mesocotyl elongation in Northern weedy rice[D]. Shenyang: Shenyang Agricultural University, 2016. (in Chinese with English abstract) | |
[22] | Lian N, Liu X M, Wang X H, Zhou Y Y, Li H, Li J G, Mao T L. COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(46): 12321-12326. |
[23] | Schaefer K, Cairo Baza A, Huang T N, Cioffi T, Elliott A, Shaw S L. WAVE-DAMPENED2-LIKE4 modulates the hyper-elongation of light-grown hypocotyl cells[J]. Plant physiology. 2023, 192(4): 2687-2702. |
[24] | Sun J B, Ma Q Q, Mao T L. Ethylene regulates the Arabidopsis microtubule-associated protein WAVE- DAMPENED2-LIKE5 in etiolated hypocotyl elongation[J]. Plant Physiology, 2015, 169(1): 325-337. |
[25] | 王莹, 马殿荣, 陈温福. 北方杂草稻中胚轴伸长特性的初步研究[J]. 中国稻米, 2008(3): 47-50. |
Wang Y, Ma D R, Chen W F. Preliminary study on mesocotyl elongation characteristics of weedy rice in northern China[J]. China Rice, 2008(3): 47-50. (in Chinese with English abstract) | |
[26] | 李亚男. 水稻中胚轴延长特性受光温影响与BSA定位研究[D]. 上海: 上海海洋大学, 2016. |
Li Y N. Study on influences of light and temperature and bulked segregation analysis for mesocotyl elongation in rice[D]. Shanghai: Shanghai Ocean University, 2016. (in Chinese with English abstract) | |
[27] | Soga-Morimoto A, Soga K, Wakabayashi K, Kamisaka S, Hoson T. Suppression of sugar accumulation in coleoptile and mesocotyl cells by light irradiation to etiolated maize seedlings[J]. Journal of Plant Physiology, 2021, 260: 153409. |
[28] | Cona A, Cenci F, Cervelli M, Federico R, Mariottini P, Moreno S, Angelini R. Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl[J]. Plant Physiology, 2003, 131(2): 803-813. |
[29] | Lyu Y S, Wei X J, Zhong M, Niu S P, Ahmad S, Shao G N, Jiao G A, Sheng Z H, Xie L H, Hu S K, Wu Y W, Tang S Q, Hu P S. Integrated transcriptome, small RNA, and degradome analysis to elucidate the regulation of rice seedling mesocotyl development during the passage from darkness to light[J]. The Crop Journal, 2020, 8(6): 918-928. |
[30] | Feng F J, Mei H W, Fan P Q, Li Y N, Xu X Y, Wei H B, Yan M, Luo L J. Dynamic transcriptome and phytohormone profiling along the time of light exposure in the mesocotyl of rice seedling[J]. Scientific Reports, 2017, 7(1): 11961. |
[31] | 陶祥. 水稻中胚轴伸长特性研究进展[J]. 农村实用技术, 2022(5): 80-81. |
Tao X. Research progress on mesocotyl elongation characteristics of rice[J]. Rural Practical Technology, 2022(5): 80-81. (in Chinese with English abstract) | |
[32] | Walton J D, Ray P M. Evidence for receptor function of auxin binding sites in maize: Red light inhibition of mesocotyl elongation and auxin binding[J]. Plant Physiology, 1981, 68(6): 1334-1338. |
[33] | 王小菁, 潘瑞炽. 红光、远红光、钙及IAA对绿豆下胚轴切段伸长的影响[J]. 植物生理学报, 1990(5): 13-16. |
Wang X J, Pan R C. Effects of red light, far-red light, calcium and IAA on the segment elongation of Vigna radiata[J]. Plant Physiology, 1990(5): 13-16. (in Chinese with English abstract) | |
[34] | 陈东, 毛毕刚, 彭彦, 韶也, 胡远艺, 吴天昊, 赵炳然. 水稻中胚轴伸长机制研究进展[J]. 杂交水稻, 2018, 33(2): 1-6. |
Chen D, Mao B, Peng Y, Shao Y, Hu Y Y, Wu T H, Zhao B R. Research progresses of the mechanism of mesocotyl elongation in rice[J]. Hybrid Rice, 2018, 33(2): 1-6. (in Chinese with English abstract) | |
[35] | Zhao X Q, Niu Y N, Hossain Z, Zhao B Y, Bai X D, Mao T T. New insights into light spectral quality inhibits the plasticity elongation of maize mesocotyl and coleoptile during seed germination[J]. Frontiers in Plant Science, 2023, 14: 1152399. |
[36] | 杨宗举, 闫蕾, 宋梅芳, 苏亮, 孟凡华, 李红丹, 白建荣, 郭林, 杨建平. 玉米光敏色素A1与A2在各种光处理下的转录表达特性[J]. 作物学报, 2016, 42(10): 1462-1470. |
Yang Z J, Yan L, Song M F, Su L, Meng F H, Li H D, Bai J R, Guo L, Yang J P. Transcription characteristics of ZmPHYA1 and ZPmHYA2 under different light treatments in maize[J]. Acta Agronomica Sinica, 2016, 42(10): 1462-1470. (in Chinese with English abstract) | |
[37] | 高苏娟, 谢修志, 陈兆平, 王小菁. 蓝光抑制Har1中胚轴伸长中ABA含量和相关基因的表达变化[J]. 华南师范大学学报, 2011(3): 107-112. |
Gao S J, Xie X Z, Chen Z P, Wang X J. Changes of ABA content and expression of related genes during mesocotyl elongation of Har1 inhibited by blue light[J]. Journal of South China Normal University, 2011(3): 107-112. (in Chinese with English abstract) | |
[38] | Camp P J, Wickliff J L. Light or ethylene treatments induce transverse cell enlargement in etiolated maize mesocotyls[J]. Plant Physiology, 1981, 67(1): 125-128. |
[39] | 曹立勇, 朱军, 颜启传, 何立斌, 魏兴华, 程式华. 水稻籼粳交DH群体幼苗中胚轴长度的QTLs定位和上位性分析[J]. 中国水稻科学, 2002, 16(3): 221-224. |
Cao L Y, Zhu J, Yan Q Z, He L B, Wei X H, Cheng S H. Mapping QTLs with epistasis for mesocotyl length in a DH population from indica-japonica cross of rice(Oryza sativa)[J]. Chinese Journal of Rice Science, 2002, 16(3): 221-224. (in Chinese with English abstract) | |
[40] | Mo X, Qian J, Liu P, Zeng H, Chen G, Wang Y. Exogenous betaine enhances the protrusion vigor of rice seeds under heat stress by regulating plant hormone signal transduction and its interaction network[J]. Antioxidants, 2022, 11(9): 1792. |
[41] | Gao C H, Hu J, Zheng Y Y, Zhang S. Antioxidant enzyme activities and proline content in maize seedling and their relationships to cold endurance[J]. The Journal of Applied Ecology, 2006, 17(6): 1045-1050. |
[42] | Dong X J, Yan Y, Jiang B C, Shi Y T, Jia Y X, Cheng J K, Shi Y H, Kang J Q, Li Hong, Zhang D, Qi L J, Han R, Zhang S M, Zhou Y Y, Wang X J, Terzaghi W, Gu H Y, Kang D M, Yang S H, Li J G. The cold response regulator CBF1 promotes Arabidopsis hypocotyl growth at ambient temperatures[J]. The EMBO Journal, 2020, 39(13): e103630. |
[43] | Xiao Y Q, Zhang L B, Luo S Y. Screening and evaluation of anaerobic hybrid offspring germplasms from Dongxiang wild rice/cultivated rice[J]. Acta Agricultural Jiangxi, 2013, 25(1): 4-6. |
[44] | Luo J, Tang S Q, Hu P S, Louis A, Jiao G A, Tang J. Analysis on factors affecting seeding establishment in rice[J]. Rice Science, 2007, 14(1): 27-32. |
[45] | 黄华, 王丽华, 李慧, 兰天明, 邓海达, 刘泰铭, 李占龙, 陈梅, 宋知江, 王周琳. 淹水直播稻萌发期生长和贮藏物质分解对外源GAs的响应[J]. 植物学研究, 2022, 11(3): 10. |
Huang H, Wang L H, Li H, Lan T M, Deng H D, Liu T M, Li Z L, Chen M, Song Z J, Wang Z L. Responses of growth and storage material decomposition to exogenous GAs in submerged direct seeding rice during germination[J]. Botanical Research, 2022, 11(3): 10. (in Chinese with English abstract) | |
[46] | Kende H, van der Knaap E, Cho H T. Deepwater rice: A model Plant to study stem elongation[J]. Plant Physiology, 1998, 118(4): 1105-1110. |
[47] | Nishiuchi S, Yamauchi T, Takahashi H, Kotula L, Nakazono M. Mechanisms for coping with submergence and waterlogging in rice[J]. Rice, 2012, 5(1): 2. |
[48] | 陈东. 水稻中胚轴伸长种质的筛选及调控中胚轴伸长性状基因的定位[D]. 长沙: 湖南大学, 2019. |
Chen D. Screening of rice mesocotyl elongation germplasm and mapping of genes regulating mesocotyl elongation in rice[D]. Changsha: Hunan University, 2019. (in Chinese with English abstract) | |
[49] | Zhao Y, Zhao W P, Jiang C H, Wang X N, Xiong H Y, Todorovska E G, Yin Z G, Chen Y F, Wang X, Xie J Y, Pan Y H, Rashid M A R, Zhang H L, Li J J, Li Z C. Genetic architecture and candidate genes for deep-sowing tolerance in rice revealed by non-syn GWAS[J]. Frontiers in Plant Science, 2018, 9: 332. |
[50] | Lu Q, Zhang M C, Niu X J, Wang C H, Xu Q, Feng Y, Wang S, Yuan X P, Yu H Y, Wang Y P, Wei X H. Uncovering novel loci for mesocotyl elongation and shoot length in indica rice through genome-wide association mapping[J]. Planta, 2016, 243(3): 645-657. |
[51] | Chung N J. Elongation habit of mesocotyls and coleoptiles in weedy rice with high emergence ability in direct-seeding on dry paddy fields[J]. Crop and Pasture Science, 2010, 61(11): 911-917. |
[52] | Farooq M, Barsa S M A, Wahid A. Priming of field-sown rice seed enhances germination, seedling establishment, allometry and yield[J]. Plant Growth Regulation, 2006, 49(2): 285-294. |
[53] | Chen X F, Zhang R D, Li B, Cui T, Liu C, Liu C J, Chen B R, Zhou Y F. Alleviation of oxidative damage induced by CaCl2priming is related to osmotic and ion stress reduction rather than enhanced antioxidant capacity during germination under salt stress in sorghum[J]. Frontiers in Plant Science, 2022, 13: 881039. |
[54] | Mo W P, Tang W J, Du Y X, Jing Y J, Bu Q Y, Lin R C. PHYTOCHROME-INTERACTING FACTOR-LIKE14 and SLENDER RICE1 interaction controls seedling growth under salt stress[J]. Plant Physiology, 2020, 184(1):506-517. |
[55] | 周德超. 再谈禾谷类种子萌发过程中胚轴的伸长[J]. 生物学通报, 1991(9): 10-11. |
Zhou D C. Further discussion on the elongation of mesocotyl during the germination process of cereal seeds[J]. Bulletin of Biology, 1991(9): 10-11. (in Chinese with English abstract) | |
[56] | 王琳琳. 油菜素甾醇和独脚金内酯调控水稻中胚轴伸长的细胞学机制[D]. 武汉: 华中农业大学, 2017. |
Wang L L. The cytological mechanism of brassinosteroid and strigolactone regulate rice mesocotyl elongation[D]. Wuhan: Huazhong Agricultural University, 2017. (in Chinese with English abstract) | |
[57] | 曹立勇, 袁守江, 周海鹏, 占小登, 吴伟明, 高俊贤, 程式华. 外源激素对水稻中胚轴伸长的影响[J]. 作物学报, 2005, 31(8): 1098-1100. |
Cao L Y, Yuan S J, Zhou H P, Zhan X D, Wu W M, Gao J X, Cheng S H. Effects of different hormones on mesocotyl length in Oryza sativa L∙[J]. Acta Agronomica Sinica, 2005, 31(8): 1098-1100. (in Chinese with English abstract) | |
[58] | Liu C, Yao Z, Jiang B, Liu C, Yao Z, Jiang B, Yu W, Wang Y, Dong W, Li Y, Shi X, Liu C, Zhou Y. Effects of exogenous auxin on mesocotyl elongation of sorghum[J]. Plants, 2023, 12(4): 944. |
[59] | Lü Y S, Dong X L, Niu S P, Cao R J, Shao G N, Sheng Z H, Jiao G A, Xie L H, Hu S K, Tang S Q, Wei X J, Hu P S. An orchestrated ethylene-gibberellin signaling cascade contributes to mesocotyl elongation and emergence of rice direct seeding[J]. Journal of Integrative Plant Biology, 2024, 66(7): 1427-1439. |
[60] | Xiong Q, Ma B, Lu X, Huang Y H, He S J, Yang C, Yin C C, Zhao H, Zhou Y, Zhang W K, Wang W S, Li Z K, Chen S Y, Zhang J S. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings[J]. The Plant Cell, 2017, 29(5): 1053-1072. |
[61] | Sun S, Wang T, Wang L, Li X M, Jia Y C, Liu C, Huang X H, Xie W B, Wang X L. Natural selection of a GSK3 determines rice mesocotyl domestication by coordinating strigolactone and brassinosteroid signaling[J]. Nature Communications, 2018, 9(1): 2523. |
[62] | Wang Y, Wang Y T, Yang R F, Wang F H, Fu J, Yang W B, Bai T, Wang S X, Yin H Q. Effects of gibberellin priming on seedling emergence and transcripts involved in mesocotyl elongation in rice under deep direct-seeding conditions[J]. Journal of Zhejiang University Science B, 2021, 22(12): 1002-1021. |
[63] | Lorrai R, Boccaccini A, Ruta V, Possenti M, Costantino P, Vittorioso P. Abscisic acid inhibits hypocotyl elongation acting on gibberellins, DELLA proteins and auxin[J]. AoB PLANTS, 2018, 10(5): ply61. |
[64] | Takahashi N. Adaptive importance of mesocotyl and coleoptile growth in rice under different moisture regim[J]. Functional Plant Biology, 1978, 5(4): 511-517. |
[65] | 李雪菲. 茉莉素通过OsMYC2与赤霉素互作调控水稻中胚轴伸长生长[D]. 武汉: 华中农业大学, 2022. |
Li X F. Jasmonate regulates rice mesocotyl elongation through the interaction between OsMYC2 and gibberellin[D]. Wuhan: Huazhong Agricultural University, 2022. (in Chinese with English abstract) | |
[66] | Zheng Y, Cui X, Su L, Fang S, Chu J F, Gong Q Q, Yang J P, Zhu Z Q. Jasmonate inhibits COP1 activity to suppress hypocotyl elongation and promote Cotyledon opening in etiolated Arabidopsis seedlings[J]. The Plant Journal, 2017, 90(6): 1144-1155. |
[67] | Hu Z Y, Yan H F, Yang J H, Yamaguchi S, Maekawa M, Takamure I, Tsutsumi N, Kyozuka J, Nakazono M. Strigolactones negatively regulate mesocotyl elongation in rice during germination and growth in darkness[J]. Plant & Cell Physiology, 2010, 51(7): 1136-1142. |
[68] | Jia K P, Luo Q, He S B, Lu X D, Yang H Q. Strigolactone-regulated hypocotyl elongation is dependent on cryptochrome and phytochrome signaling pathways in Arabidopsis[J]. Molecular Plant, 2014, 7(3): 528-540. |
[69] | Zheng J, Hong K, Zeng L J, Wang L, Kang S J, Qu M H, Dai J R, Zou L Y, Zhu L X, Tang Z P, Meng XB, Wang B, Hu J, Zeng D L, Zhao Y H, Cui P, Wang Q, Qian Q, Wang Y H, Li J Y, Xiong G S. Karrikin signaling acts parallel to and additively with strigolactone signaling to regulate rice mesocotyl elongation in darkness[J]. The Plant Cell, 2020, 32(9): 2780-2805. |
[70] | Choi J, Lee T, Cho J, Servante E K, Pucker B, Summers W, Bowden S, Rahimi M, An K, An G, Bouwmeester H J, Wallington E J, Oldroyd G, Paszkowski U. The negative regulator SMAX1 controls mycorrhizal symbiosis and strigolactone biosynthesis in rice[J]. Nature Communications, 2020, 11(1): 2114. |
[71] | Hu Z Y, Yamauchi T, Yang J H, Jikumaru Y, Tsuchida M Tomoko, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S, Kyozuka J, Nakazono M. Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness[J]. Plant & Cell Physiology, 2014, 55(1):30-41. |
[72] | Shi J, Zhao X Q, Niu Y N, Chen X J, Ren X W. Brassinosteroid affects the elongation of mesocotyl and coleoptile in Zea mays L. by regulating the network of circadian rhythm under severe stress[J]. Russian Journal of Plant Physiology, 2022, 53(5): 90-99. |
[73] | Le J, Zou J, Yang K, Yang K Z, Wang M. Signaling to stomatal initiation and cell division[J]. Frontiers in Plant Science, 2014, 5: 297. |
[74] | Wang X, Wu R, Shen T. An R2R3-MYB transcription factor OsMYBAS1 promotes seed germination under different sowing depths in transgenic rice[J]. Plants, 2022, 11(1): 139. |
[75] | Du L G, Jiang H Y, Zhao G W, Ren J Y. Gene cloning of ZmMYB59 transcription factor in maize and its expression during seed germination in response to deep-sowing and exogenous hormones[J]. Plant Breeding, 2017, 136: 834-844. |
[76] | 蒋红叶. 玉米ZmMYB59基因及其同源基因OsMYBAS1在水稻中的功能分析[D]. 杭州: 浙江农林大学, 2018. |
Jiang H Y. Functional analysis of maize ZmMYB59 gene and its homologous gene OsMYBAS1 in rice[D]. Hangzhou: Zhejiang Agricultural and Forestry University, 2018. (in Chinese with English abstract) | |
[77] | Lü Y S, Shao G N, Jiao G A, Sheng Z H, Xie L H, Hu S K, Tang S Q, Wei X J, Hu P S. Targeted mutagenesis of POLYAMINE OXIDASE 5 that negatively regulates mesocotyl elongation enables the generation of direct-seeding rice with improved grain yield[J]. Molecular Plant, 2021, 14(2): 344-351. |
[78] | Yang D, Liu X, Yin X M, Dong T, Yu M, Wu Y. Rice non-specific phospholipase C6 is involved in mesocotyl elongation[J]. Plant & Cell Physiology, 2021, 62(6): 985-1000. |
[79] | Meng Y, Zhan J H, Liu H Y, Liu J D, Wang Y M, Guo Z, He S, Nie L X, Kohli A, Ye G Y. Natural variation of OsML1, a mitochondrial transcription termination factor, contributes to mesocotyl length variation in rice[J]. The Plant Journal, 2023, 115(4): 910-925. |
[80] | Li J, Terzaghi W, Gong Y Y, Li C R, Ling J J, Fan Y Y, Qin N X, Gong X Q, Zhu D M, Deng X W. Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light[J]. Nature Communications, 2020, 11(1): 1592. |
[81] | 佘玉婷, 丁勇. STE20L4促进拟南芥下胚轴伸长的机制研究[J]. 热带作物学报, 2022, 43(6): 1144-1151. |
She Y T, Ding Y. Mechanism study of STE20L4 in promoting hypocotyl elongation of Arabidopsis thaliana[J]. Journal of Tropical Crops, 2022, 43(6): 1144-1151. (in Chinese with English abstract) | |
[82] | Lee H S, Kang J W, Chung N J, Choi K S, Ahn S N. Identification of molecular markers for mesocotyl elongation in weddy rice[J]. Korean Journal of Breeding Science, 2012, 44(3): 238-244. |
[83] | 高用明, 朱军. 植物 QTL 定位方法的研究进展[J]. 遗传, 2000, 22(3): 175-179. |
Gao Y M, Zhu J. Advance on methodology of QTL mapping for plants[J]. Genetics, 2000, 22(3): 175-179. (in Chinese with English abstract) | |
[84] | Han Q H, Shen Y, Lü L, Lee M, Lübberstedt T, Zhao G W. QTL analysis of deeps-sowing tolerance during seed germination in the maize IBM Syn4 RIL population[J]. Plant Breeding, 2020, 139(6): 1125-1134. |
[85] | Lee H S, Sasaki K, Kang J W, Sato T, Song W Y, Ahn S N. Mesocotyl elongation is essential for seedling emergence under deep-seeding condition in rice[J]. Rice, 2017, 10(1): 32. |
[86] | Wu J H, Feng F J, Lian X M, Teng X Y, Wei H B, Yu H H, Xie W B, Yan M, Fan P Q, Li Y, Ma X S, Liu H Y, Yu S B, Wang G W, Zhou F S, Luo L J, Mei H W. Genome-wide association study (GWAS) of mesocotyl elongation based on re-sequencing approach in rice[J]. BMC Plant Biology, 2015, 15: 218. |
[87] | Lee H S, Sasaki K, Higashitani A, Ahn S N, Sato T. Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oryza sativa L.)[J]. Rice, 2012, 5(1): 13. |
[88] | Katsuta S M, Ebana K, Okuno K. QTL analysis for mesocotyl elongation in rice[J]. Rice Genetics Newsletter, 1996, 13: 126. |
[89] | Redoña E D, Mackill D J. Mapping quantitative trait loci for seedling vigor in rice using RFLPs[J]. Theoretical and Applied Genetics, 1996, 92(3/4): 395-402. |
[90] | Wisdom E M. 基于关联分析发掘水稻(Oryza sativa L.)幼苗中胚轴伸长长度和苗高的优异等位变异[D]. 南京: 南京农业大学, 2018. |
Wisdom E M. Mining of elite alleles for mesocotyl elongation length and shoot length in rice (Oryza sativa L.) cultivars through association analysis[D]. Nanjing: Nanjing Agricultural University, 2018. (in Chinese with English abstract) | |
[91] | Cai W, Morishima H. QTL clusters reflect character associations in wild and cultivated rice[J]. Theoretical and Applied Genetics, 2002, 104(8): 1217-1228. |
[92] | Gothe R M, Bhatia D, Kamboj A, Sandhu N, Dhillon B S. Genetic variation for anaerobic germination and emergence from deeper soil depth in Oryza nivara accessions[J]. Rice Science, 2022, 29(4): 304-308. |
[93] | Menard G, Sandhu N, Anderson D, Catolos M, Hassall K L, Eastmond P J, Kumar A, Kurup S. Laboratory phenomics predicts field performance and identifies superior indica haplotypes for early seedling vigour in dry direct-seeded rice[J]. Genomics, 2021, 113(6): 4227-4236. |
[94] | Sakhale S A, Yadav S, Clark L V, Lipka A E, Kumar A, Sacks E J. Genome-wide association analysis for emergence of deeply sown rice (Oryza sativa) reveals novel Aus-specific phytohormone candidate genes for adaptation to dry-direct seeding in the field[J]. Frontiers in Plant Science, 2023, 14: 1172816. |
[95] | Wang Y M, Liu J D, Meng Y, Liu H Y, Liu C, Ye G Y. Rapid identification of QTL for mesocotyl length in rice through combining QTL-seq and genome-wide association analysis[J]. Frontiers in Genetics, 2021, 12: 713446. |
[96] | 刘畅, 孟云, 刘金栋, 王雅美, 叶国友. 结合QTL-seq和连锁分析发掘水稻中胚轴伸长相关QTL[J]. 作物学报, 2021, 47(10): 2036-2044. |
Liu C, Meng Y, Liu J D, Wang Y M, Ye G Y. Combining QTL-seq and linkage analysis to identify the QTL of mesocotyl elongation in rice (Oryza sativa L.)[J]. Crop Science, 2021, 47(10): 2036-2044. (in Chinese with English abstract) | |
[97] | 黄成, 姜树坤, 冯玲玲, 徐正进, 陈温福. 水稻中胚轴长度QTL分析[J]. 作物学报, 2010, 36(7): 1108-1113. |
Huang C, Jiang S K, Feng L L, Xu Z J, Chen W F. QTL analysis for mesocotyl length in rice (Oryza sativa L.)[J]. Acta Agronomica Sinica, 2010, 36(7): 1108-1113. (in Chinese with English abstract) | |
[98] | Feng F J, Ma X S, Yan M, Zhang H, Mei D L, Fan P Q, Xu X Y, Wei C L, Lou Q J, Li T F, Liu H Y, Luo L J, Mei H W. Identification of genetic loci for rice seedling mesocotyl elongation in both natural and artificial segregating populations[J]. Plants, 2023, 12(14): 2743. |
[99] | 牛世朋, 吕育松, 邬亚文, 魏祥进, 圣忠华, 焦桂爱, 胡时开, 唐绍清. 控制水稻中胚轴伸长的QTL定位[J]. 中国稻米, 2019, 25(6): 55-59. |
Niu S P, Lü Y S, Wu Y W, Wei X J, Sheng Z H, Jiao G A, Hu S K, Tang S Q. QTLs mapping for mescotyl length in rice[J]. China Rice, 2019, 25(6): 55-59. (in Chinese with English abstract) | |
[100] | 王学路, 孙世勇, 王涛. 水稻CYCU2;1基因在控制水稻中胚轴发育中的应用: CN108752443B[P]. 2021-09-07. |
Wang X L, Sun S Y, Wang T. Application of rice CYCU2;1 gene in controlling mesocotyl development in rice: CN108752443B[P]. 2021-09-07. (in Chinese with English abstract) | |
[101] | 严明, 梅捍卫, 冯芳君, 范佩清, 李天菲, 吴金红, 李亚南. 水稻中胚轴延长基因OsMsc8及其应用: CN105524929A[P]. 2016-04-27. |
Yan M, Mei H W, Feng F J, Fan P Q, Li T F, Wu J H, Li Y N. Rice mesocotyl elongation gene OsMsc8 and its application: CN105524929A[P]. 2016-04-27. (in Chinese with English abstract) | |
[102] | Zhang X J, Lai Y C, Meng Y, Tang A, Dong W J, Liu Y H, Liu K, Wang L Z, Yang X L, Wang W L, Ding G H, Jiang H, Ren Y, Jiang S K. Analyses and identifications of quantitative trait loci and candidate genes controlling mesocotyl elongation in rice[J]. Journal of Integrative Agriculture, 2023, 22(2): 325-340. |
[103] | Jang S G, Park S Y, San M L, Zhang H J, Lee A R, Cao F Y, Seo J, Ham T H, Lee J, Kwon S W. Genome-wide association study (GWAS) of mesocotyl length for direct seeding in rice[J]. Agronomy (Basel), 2021, 11(12): 2527. |
[104] | Wang Y M, Liu H Y, Meng Y, Liu J D, Ye G Y. Validation of genes affecting rice mesocotyl length through candidate association analysis and identification of the superior haplotypes[J]. Frontiers in Plant Science, 2023, 14: 1194119. |
[105] | Ju L, Lü N, Yin F, Niu H, Yan H S, Wang Y B, Fan F F, Lü X, Chu J Q, Ping J A. Identification of key genes regulating sorghum mesocotyl elongation through transcriptome analysis[J]. Genes, 2023, 14(6): 1215. |
[1] |
WU Jinshui, TANG Jiangying, TAN Li, GUO Zhiqiang, YANG Juan, ZHANG Xinzhen, CHEN Guifang, WANG Jianlong, SHI Wanju.
Mechanisms of Arsenic Uptake and Transport in Rice and Agronomic Mitigation Strategies [J]. Chinese Journal OF Rice Science, 2025, 39(2): 143-155. |
[2] |
MA Weiyi, ZHU Jizou, ZHU Wang, GENG Xiaoyu, ZHANG Xiang, DIAO Liuyun, WANG Lulu, MENG Tianyao, GAO Pinglei, CHEN Yinglong, DAI Qigen, WEI Huanhe.
Research Progress in Effects of Salt and Drought Stresses on Rice Quality Formation and Associated Physiological Mechanisms [J]. Chinese Journal OF Rice Science, 2025, 39(2): 156-170. |
[3] |
ZHANG Laitong, YANG Le, LIU Hong, ZHAO Xueming, CHENG Tao, XU Zhenjiang.
Research Advances of Fragrance Substances in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(2): 171-186. |
[4] |
FENG Tao, ZHANG Zhaoyang, HUANG Xinni, WANG Yue, ZHONG Xuzhi, FENG Zhiming, LIU Xin, ZUO Shimin, OUYANG Shouqiang.
Osa-miR166i-3 Positively Regulates Resistance to Sheath Blight Through Mediating the Accumulation of Reactive Oxygen Species [J]. Chinese Journal OF Rice Science, 2025, 39(2): 187-196. |
[5] |
GONG Mengmeng, SONG Shufeng, QIU Mudan, DONG Hao, ZHANG Longhui, LI Lei, LI Bin, CHEN Weijun , LI Yixing, WANG Tiankang, LEI Dongyang, LI Li.
Functional Characterization of Rice Leaf Color Gene OsClpP6 [J]. Chinese Journal OF Rice Science, 2025, 39(2): 197-208. |
[6] |
YAN Ying, WANG Kai, ZHANG Lixia, HU Zejun, YE Junhua, YANG Hang, GU Chunjun, WU Shujun.
Development of a New High-Quality and Multi-Resistant japonica Rice Variety, Huxianggeng 216, Through Molecular Pyramiding Breeding [J]. Chinese Journal OF Rice Science, 2025, 39(2): 209-219. |
[7] |
XU Yuemei, PENG Shiyan, SUN Zhiwei, WANG Zhiqin, ZHU Kuanyu, YANG Jianchang.
Differences in Endogenous Hormone Levels and Their Relationship with Yield and Phosphorus Use Efficiency in Rice Varieties With Various Tolerance to Low Phosphorus Stress [J]. Chinese Journal OF Rice Science, 2025, 39(2): 231-244. |
[8] |
TANG Chenghan, WANG Jingqing, CHEN Huizhe, ZHANG Yuping, XIANG Jing, ZHANG Yikai, WANG Zhigang, HUAI Yan, CHEN Jiafeng, WANG Yaliang.
Effects of Hybrid Rice Seedling Quality in Drill-seeding Nursery on Grain Yield in Mechanical Transplanting [J]. Chinese Journal OF Rice Science, 2025, 39(2): 245-254. |
[9] |
SHU Ao, XIE Jiaxin, CAO Wei, ZHOU Chuanming, LI Beilei, CHEN Jiaxin, LI Li, CAO Fangbo, CHEN Jiana, HUANG Min.
Effect of Nitrogen Management Strategies on Yield and Grain Quality of High-quality Hybrid Mid-season Rice [J]. Chinese Journal OF Rice Science, 2025, 39(2): 255-263. |
[10] |
SHAO Yafang, ZHU Dawei, ZHENG Xin, MOU Renxiang, ZHANG Linping, CHEN Mingxue.
Development Status and Regional Differences of japonica Rice Quality in the Yangtze River Delta Region from 2002 to 2022 [J]. Chinese Journal OF Rice Science, 2025, 39(2): 264-276. |
[11] | SUI Jingjing, ZHAO Guilong, JIN Xin, BU Qingyun, TANG Jiaqi. Advances in Molecular and Physiological Mechanisms of Cold Tolerance Regulation of Rice at the Booting Stage [J]. Chinese Journal OF Rice Science, 2025, 39(1): 1-10. |
[12] | ZHANG Fengyong, YING Xiaoping, ZHANG Jian, YANG Longwei, YING Jiezheng. Progress in Regulation of Important Agronomic Traits by Semi-Dwarf Gene sd1 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 24-32. |
[13] | XIAO Wuwei, ZHU Chenguang, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui. Research Progress in Rice Quality of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 33-46. |
[14] | CHEN Zhihui, TAO Yajun, FAN Fangjun, XU Yang, WANG Fangquan, LI Wenqi, GULINAER·Bahetibieke , JIANG Yanjie, ZHU Jianping, LI Xia, YANG Jie. Development and Application of a Functional Marker for Heading Date Gene Hd6 in Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 47-54. |
[15] | HU Fengyue, WANG Jian, WANG Chun, WANG Kejian, LIU Chaolei. Generation of Rice DMP1, DMP2 and DMP3 Mutants and Identification of Their Haploid Induction Ability [J]. Chinese Journal OF Rice Science, 2025, 39(1): 55-66. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||