Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (1): 24-32.DOI: 10.16819/j.1001-7216.2025.231104
• Reviews and Special Topics • Previous Articles Next Articles
ZHANG Fengyong1,2, YING Xiaoping3, ZHANG Jian2, YANG Longwei1,*(), YING Jiezheng2,*(
)
Received:
2023-11-04
Revised:
2024-01-09
Online:
2025-01-10
Published:
2025-01-14
Contact:
YANG Longwei, YING Jiezheng
张丰勇1,2, 应晓平3, 张健2, 杨隆维1,*(), 应杰政2,*(
)
通讯作者:
杨隆维,应杰政
基金资助:
ZHANG Fengyong, YING Xiaoping, ZHANG Jian, YANG Longwei, YING Jiezheng. Progress in Regulation of Important Agronomic Traits by Semi-Dwarf Gene sd1 in Rice[J]. Chinese Journal OF Rice Science, 2025, 39(1): 24-32.
张丰勇, 应晓平, 张健, 杨隆维, 应杰政. 半矮秆基因sd1调控水稻重要农艺性状的研究进展[J]. 中国水稻科学, 2025, 39(1): 24-32.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.231104
单倍型 Haplotype | SNP1 (38382762) | SNP2 (38382764) | SNP3 (38383144) | SNP4 (38383221) | SNP5 (38385057) | SNP6 (38385199) | Aus | Bas | XI | GJ | Admix | 合计Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hap_1(NIP) | C | A | T | C | A | G | 1 | 33 | 27 | 522 | 18 | 601 |
Hap_2 | C | G | T | T | G | G | 33 | 0 | 585 | 0 | 15 | 633 |
Hap_3 | C | G | T | C | G | G | 80 | 1 | 121 | 0 | 7 | 209 |
Hap_4 | C | G | T | C | G | A | 0 | 0 | 117 | 0 | 1 | 118 |
Hap_5 | - | - | - | T | G | G | 0 | 0 | 78 | 8 | 3 | 89 |
Hap_6 | C | G | T | T | G | G | 2 | 0 | 71 | 0 | 3 | 76 |
Table 1. Haplotype of the SD1 gene in RFGP data
单倍型 Haplotype | SNP1 (38382762) | SNP2 (38382764) | SNP3 (38383144) | SNP4 (38383221) | SNP5 (38385057) | SNP6 (38385199) | Aus | Bas | XI | GJ | Admix | 合计Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Hap_1(NIP) | C | A | T | C | A | G | 1 | 33 | 27 | 522 | 18 | 601 |
Hap_2 | C | G | T | T | G | G | 33 | 0 | 585 | 0 | 15 | 633 |
Hap_3 | C | G | T | C | G | G | 80 | 1 | 121 | 0 | 7 | 209 |
Hap_4 | C | G | T | C | G | A | 0 | 0 | 117 | 0 | 1 | 118 |
Hap_5 | - | - | - | T | G | G | 0 | 0 | 78 | 8 | 3 | 89 |
Hap_6 | C | G | T | T | G | G | 2 | 0 | 71 | 0 | 3 | 76 |
Fig. 2. Comparison of agronomic traits among different haplotypes of SD1 gene including plant height, panicle length, days to heading, grain length, grain width, and thousand-grain weight The same letter on the column indicates that difference between the haplotypes was not significant at the 0.05 level.
[1] | Khan M H, Dar Z A, Dar S A. Breeding strategies for improving rice yield: A review[J]. Agricultural Sciences, 2015, 6(5): 467-478. |
[2] | Hedden P. The genes of the Green Revolution[J]. Trends in Genetic, 2003, 19(1): 5-9. |
[3] | Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G S, Kitano H, Matsuoka M. Green revolution: A mutant gibberellin-synthesis gene in rice: New insight into the rice variant that helped to avert famine over thirty years ago[J]. Nature, 2002, 416(6882): 701-702. |
[4] | Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y. Positional cloning of rice semidwarfing gene, sd-1: Rice "Green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis[J]. DNA Research, 2002, 9(1): 11-17. |
[5] | Khush G S. Green revolution: preparing for the 21st century[J]. Genome, 1999, 42(4): 646-655. |
[6] | Khush G S. Modern varieties-Their real contribution to food supply and equity[J]. GeoJournal, 1995, 35(3): 275-284. |
[7] | Xue H D, Zhang Y Z, Xiao G H. Neo-gibberellin Signaling: Guiding the Next Generation of the Green Revolution[J]. Trends in Plant Science, 2020, 25(6): 520-522. |
[8] | Vriet C, Russinova E, Reuzeau C. Boosting crop yields with plant steroids[J]. Plant Cell, 2012, 24(3): 842-857. |
[9] | Peng S, Cassman K G, Virmani S S, Sheehy J, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential[J]. Crop Science, 1999, 39(6): 1552-1559. |
[10] | Peng J R, Richards D E, Hartley N M, Murphy G P, Devos K M, Flintham J E, Beales J, Fish L J, Worland A J, Pelica F, Sudhakar D, Christou P, Snape J W, Gale M D, Harberd N P. Green revolution genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400(6741): 256-261. |
[11] | Jia X Q, Yu L Y, Tang M L, Tian D C, Yang S H, Zhang X H, Traw M B. Pleiotropic changes revealed by recovery of the semi-dwarf gene in rice[J]. Journal of Plant Physiology, 2020, 248: 153141. |
[12] | Liu Q, Wu K, Wu Y, Song W, Wang S, Fu X. Beyond the Green Revolution: Improving crop productivity and sustainability by modulating plant growth-metabolic coordination[J]. Molecular Plant, 2022, 15(4): 573-576. |
[13] | Fleet C M, Sun T P. A DELLAcate balance: The role of gibberellin in plant morphogenesis[J]. Current Opinion in Plant Biology, 2005, 8(1): 77-85. |
[14] | Koboyashi M, Yamaguchi I, Murofushi N, Ota Y, Takahashi N. Fluctuation and localization of endogenous gibberellins in rice[J]. Agricultural and Biological Chemistry, 1988, 52(5): 1189-1194. |
[15] | Varbanova M, Yamaguchi S, Yang Y, Mckelvey K, Hanada A, Borochov R, Yu F, Jikumaru Y, Ross J, Cortes D, Ma C J, Noel J P, Mander L, Shulaev V, Kamiya Y, Rodermel S, Weiss D, Pichersky E. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2[J]. Plant Cell, 2007, 19(1): 32-45. |
[16] | Spielmeyer W, Ellis M, Chandler P. Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(13): 9043-9048. |
[17] | Wu B, Hu W, Ayaad M, Liu H B, Xing Y Z. Intragenic recombination between two non-functional-alleles produced a functional allele in a tall recombinant inbred line in rice[J]. Plos ONE, 2017, 12(12): e0190116. |
[18] | Wang C C, Yu H, Huang J, Wang W S, Faruquee M, Zhang F, Zhao X Q, Fu B Y, Chen K, Zhang H L, Tai S S, Wei C C, Mcnally K L, Alexandrov N, Gao X Y, Li J Y, Li Z K, Xu J L, Zheng T Q. Towards a deeper haplotype mining of complex traits in rice with RFGB v2.0[J]. Plant Biotechnology Journal, 2020, 18(1): 14-16. |
[19] | Asano K, Takashi T, Miura K, Qian Q, Kitano H, Matsuoka M, Ashikari M. Genetic and molecular analysis of utility of sd1 alleles in rice breeding[J]. Breeding Science, 2007, 57(1): 53-58. |
[20] | Asano K, Yamasaki M, Takuno S, Miura K, Katagiri S, Ito T, Doi K, Wu J Z, Ebana K, Matsumoto T, Innan H, Kitano H, Ashikari M, Matsuoka M. Artificial selection for a green revolution gene during japonica rice domestication[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(27): 11034-11039. |
[21] | Yu Y, Hu X, Zhu Y, Mao D. Re-evaluation of the rice ‘Green Revolution’ gene: The weak allele SD1-EQ from japonica rice may be beneficial for super indica rice breeding in the post-Green Revolution era[J]. Molecular Breeding, 2020, 40(9). |
[22] | Zentella R, Zhang Z L, Park M, Thomas S G, Endo A, Murase K, Fleet C M, Jikumaru Y, Nambara E, Kamiya Y, Sun T P. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis[J]. Plant Cell, 2007, 19(10): 3037-3057. |
[23] | Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J. slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8[J]. Plant Cell, 2001, 13(5): 999-1010. |
[24] | Willige B C, Ghosh S, Nill C, Zourelidou M, Dohmann E M N, Maier A, Schwechheimer C. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis[J]. Plant Cell, 2007, 19(4): 1209-1220. |
[25] | Wu K, Wang S S, Song W Z, Zhang J Q, Wang Y, Liu Q, Yu J P, Ye Y F, Li S, Chen J F, Zhao Y, Wang J, Wu X K, Wang M Y, Zhang Y J, Liu B M, Wu Y J, Harberd N P, Fu X D. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice[J]. Science, 2020, 367(6478): 641. |
[26] | Liao Z G, Yu H, Duan J B, Yuan K, Yu C J, Meng X B, Kou L Q, Chen M J, Jing Y H, Liu G F, Smith S M, Li J Y. SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice[J]. Nature Communications, 2019, 10. |
[27] | Su S, Hong J, Chen X F, Zhang C Q, Chen M J, Luo Z J, Chang S W, Bai S X, Liang W Q, Liu Q Q, Zhang D B. Gibberellins orchestrate panicle architecture mediated by DELLA-KNOX signalling in rice[J]. Plant Biotechnology Journal, 2021, 19(11): 2304-2318. |
[28] | Ye H, Beighley D H, Feng J H, Gu X Y. Genetic and physiological characterization of two clusters of quantitative trait loci associated with seed dormancy and plant height in rice[J]. Genes Genomes Genetics, 2013, 3(2): 323-331. |
[29] | Ye H, Feng J, Zhang L, Zhang J, Mispan M, Cao Z, Beighley D, Yang J, Gu X. Map-based cloning of seed dormancy1-2 identified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice[J]. Plant Physiology, 2015, 169(3): 2152-2165. |
[30] | Murai M, Hirose S, Sato S. Effects of the dwarfing gene from Dee-geo-woo-gen and others on cool temperature tolerance at flowering stage in rice[J]. Japanese Journal of Breeding, 1992, 42(4): 811-823. |
[31] | 徐青山, 黄晶, 孙爱军, 洪小智, 朱练峰, 曹小闯, 孔亚丽, 金千瑜, 朱春权, 张均华. 低温影响水稻发育机理及调控途径研究进展[J]. 中国水稻科学, 2022, 36(2): 118-130. |
Xu Q S, Huang J, Sun A J, Hong X Z, Zhu L F, Cao X C, Kong Y L, Jin Q Y, Zhu C Q, Zhang J H. Effects of low temperature on the growth and development of rice plants and the advance of regulation pathways[J]. Chinese Journal of Rice Science, 2022, 36(2): 118-130. (in Chinese with English abstract) | |
[32] | Sakata T, Oda S, Tsunaga Y, Shomura H, Kawagishi-Kobayashi M, Aya K, Saeki K, Endo T, Nagano K, Kojima M, Sakakibara H, Watanabe M, Matsuoka M, Higashitani A. Reduction of gibberellin by low temperature disrupts pollen development in in rice[J]. Plant Physiology, 2014, 164(4): 2011-2019. |
[33] | Vikram P, Swamy B P M, Dixit S, Singh R, Singh B P, Miro B, Kohli A, Henry A, Singh N K, Kumar A. Drought susceptibility of modern rice varieties: An effect of linkage of drought tolerance with undesirable traits[J]. Scientific Reports, 2015, 5: 14799. |
[34] | Terao T, Hirose T. Control of grain protein contents throughSEMIDWARF1 mutant alleles: sd1increases the grain protein content in Dee-geo-woo-gen but not in Reimei[J]. Molecular Genetics and Genomics, 2015, 290(3): 939-954. |
[35] | Li S, Tian Y H, Wu K, Ye Y F, Yu J P, Zhang J Q, Liu Q, Hu M Y, Li H, Tong Y P, Harberd N P, Fu X D. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560(7720): 595. |
[36] | Wang C, Feng X M, Yuan Q B, Lin K X, Zhang X H, Yan L, Nan J Z, Zhang W Q, Wang R S, Wang L H, Xue Q, Yang X W, Liu Z X, Lin S Y. Upgrading the genome of an elite japonica rice variety Kongyu 131 for lodging resistance improvement[J]. Plant Biotechnology Journal, 2023, 21(2): 419-432. |
[37] | Hu X M, Cui Y T, Dong G J, Feng A H, Wang D Y, Zhao C Y, Zhang Y, Hu J, Zeng D L, Guo L B, Qian Q. Using CRISPR-Cas9 to generate semi-dwarf rice lines in elite landraces[J]. Scientific Reports, 2019, 9: 19096. |
[38] | 李刚, 高清松, 李伟, 张雯霞, 王健, 程保山, 王迪, 徐卫军, 陈红旗, 纪剑辉. 定向敲除SD1基因提高水稻抗倒性和稻瘟病抗性[J]. 中国水稻科学, 2023, 37(4): 359-367. |
Li G, Gao Q S, Li W, Zhang W X, Wang J, Chen B S, Wang D, Gao H, Xu W J, Chen H Q, Ji J H. Directed knockout of SD1 gene improves lodging resistance and blast resistance of rice[J]. Chinese Journal of Rice Science, 2023, 37(4): 359-367. (in Chinese with English abstract) | |
[39] | 黄先忠, 马正强. DELLA家族蛋白与植物生长发育的关系[J]. 植物生理学通讯, 2004(5): 529-532. |
Huang X Z, Ma Z Q. Progress in studies on DELLA protein family in plant growth and development[J]. Plant Physiology Communications, 2004(5): 529-532. (in Chinese with English abstract) | |
[40] | Asano K, Hirano K, Ueguchi-Tanaka M, Angeles-Shim R B, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M. Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice[J]. Molecular Genetics and Genomics, 2009, 281(2): 223-231. |
[41] | Wu Z G G, Tang D, Liu K, Miao C B, Zhuo X X, Li Y F, Tan X L, Sun M F, Luo Q, Cheng Z K. Characterization of a new semi-dominant dwarf allele of SLR1 and its potential application in hybrid rice breeding[J]. Journal of Experimental Botany, 2018, 69(20): 4703-4713. |
[42] | Kovi M, Zhang Y S, Yu S B, Yang G Y, Yan W H, Xing Y Z. Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to Green Revolution gene sd1[J]. Theoretical and Applied Genetics, 2011, 123(5): 705-714. |
[43] | 刘佳欣, 吴周周, 周婵婵, 阿娜, 李漪濛, 王术. 水稻倒伏性状与抗倒途径研究进展[J]. 中国稻米, 2023 (6): 1-6. |
Liu J X, Wu Z Z, Zhou C C, A N, Li Y M, Wang S. Research progress of lodging characters and lodging resistance pathways in rice[J]. China Rice, 2023(6): 44-48. (in Chinese with English abstract) | |
[44] | Sun H Y, Qian Q, Wu K, Luo J J, Wang S S, Zhang C W, Ma Y F, Liu Q, Huang X Z, Yuan Q B, Han R X, Zhao M, Dong G J, Guo L B, Zhu X D, Gou Z H, Wang W, Wu Y J, Lin H X, Fu X D. Heterotrimeric G proteins regulate nitrogen-use efficiency in rice[J]. Nature Genetics, 2014, 46(6): 652-656. |
[45] | Tanokura M, Miyakawa T, Xue Y, Nakamura H, Hou F, Qin H, Fukui K, Shi X, Ito S, Miyauchi Y, Asano A, Totsuka N, Asami T. Molecular mechanism of strigolactone perception by DWARF14[J]. Acta Crystallographica a-Foundation and Advances, 2014, 70: C1062-C1062. |
[46] | Sun H, Guo X, Zhu X, Gu P, Zhang W, Tao W, Wang D, Wu Y, Zhao Q, Xu G, Fu X, Zhang Y. Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice[J]. Molecular Plant, 2023, 16(3): 588-598. |
[47] | Asami T. Toward the next step to the New Green Revolution[J]. Molecular Plant, 2023, 16(5): 802-803. |
[48] | Wang Y X, Shang L G, Yu H, Zeng L J, Hu J, Ni S, Rao Y C, Li S F, Chu J F, Meng X B, Wang L, Hu P, Yan J J, Kang S J, Qu M H, Lin H, Wang T, Wang Q, Hu X M, Chen H Q, Wang B, Gao Z Y, Guo L B, Zeng D L, Zhu X D, Xiong G S, Li J Y, Qian Q. A strigolactone biosynthesis gene contributed to the green revolution in rice[J]. Molecular Plant, 2020, 13(6): 923-932. |
[49] | Nomura T, Arakawa N, Yamamoto T, Ueda T, Adachi S, Yonemaru J, Abe A, Takagi H, Yokoyama T, Ookawa T. Next generation long-culm rice with superior lodging resistance and high grain yield, Monster Rice 1[J]. Plos One, 2019, 14(8). |
[50] | 兰金松, 庄慧. 水稻株型的分子机理研究进展[J]. 中国水稻科学, 2023, 37(5): 449-458. |
Lan J S, Zhuang H. Advances in the molecular mechanism of rice plant type[J]. Chinese Journal of Rice Science, 2023, 37(5): 449-458. (in Chinese with English abstract) |
[1] | LI Gang, GAO Qingsong, LI Wei, ZHANG Wenxia, WANG Jian, CHEN Baoshan, WANG Di, GAO Hao, XU Weijun, CHEN Hongqi, JI Jianhui. Directed Knockout of SD1 Gene Improves Lodging Resistance and Blast Resistance of Rice [J]. Chinese Journal OF Rice Science, 2023, 37(4): 359-367. |
[2] | Xuejiao HU, Jia YANG, Can CHENG, Jihua ZHOU, Fuan NIU, Xinqi WANG, Meiliang ZHANG, Liming CAO, Huangwei CHU. Targeted Editing of Rice SD1 Gene UsingCRISPR/Cas9 System [J]. Chinese Journal OF Rice Science, 2018, 32(3): 219-225. |
[3] | CHENG Can ,WU Yue-jin ,LIU Bin-mei ,TONG Ji-ping ,WU Jing-de ,ZHANG Ying ,WU Jin-hua ,YUAN Qin. Expression of Plant Height and Sensitivity to GA3 of Dominant Semi-Dwarfing Gene in Rice [J]. Chinese Journal of Rice Science, 2006, 20(1): 25-30 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||