[1]Shi H, Xiong L, Stevenson B, et al. The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell, 2002, 14(3): 575588.
[2]祁栋灵, 韩龙植, 张三元. 水稻耐盐碱性鉴定评价方法. 植物遗传资源学报, 2005(2): 226230.
Qi D L, Han L Z, Zhang S Y. Methods of characterization and evaluation of salt or alkaline tolerance in rice. J Plant Genet Resour, 2005(2): 226230.(in Chinese with English abstract)
[3]Maggio A, Barbieri G, Raimondi G, et al. Contrasting effects of GA3 treatments on tomato plants exposed to increasing salinity. J Plant Growth Regul, 2010, 29(1): 6372.
[4]郭望模, 傅亚萍, 孙宗修. 水稻芽期和苗期耐盐指标的选择研究. 浙江农业科学, 2004(1): 3033.
Guo W M, Fu Y P, Sun Z X. Salt tolerance evaluation indices of rice at its germinating and seedling stages. J Zhejiang Agric Sci, 2004(1): 3033.(in Chinese with English abstract)
[5]孙健, 王敬国, 刘化龙,等. 盐胁迫下水稻苗高和分蘖数的发育动态QTL分析. 核农学报, 2015, 29(2): 235243.
Sun J, Wang J G, Liu H L, et al. Dynamic QTL analysis of rice seedling height and tiller number under salt stress. J Nucl Agic Sci. 2015,29(2): 235243.(in Chinese with English abstract)
[6]余为仆. 秸秆还田条件下盐胁迫对水稻产量与品质形成的影响. 扬州: 扬州大学, 2014: 3039.
Yu W P. Effect of salt stress associated with straw returning on yield and quality of rice. Yangzhou: Yangzhou University, 2014: 3039.(in Chinese with English abstract)
[7]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 2003, 218(1): 114.
[8]Yamane K, Rahman MS, Kawasaki M, et al. Pretreatment with antioxidants decreases the effects of salt stress on chloroplast ultrastructure in rice leaf segments (Oryza sativa L.). Plant Prod Sci, 2004, 7(3): 292300.
[9]王仁雷, 华春, 罗庆云, 等. 盐胁迫下水稻叶绿体中Na+、Cl-积累导致叶片净光合速率下降. 植物生理与分子生物学学报, 2002, 28(5): 385390.
Wang R L, Hua Chun, Luo Q Y, et al. Na+ and Cl- accumulation in chloroplasts results in a decrease in net photosynthetic rate in rice leaves under salt stress. J Plant Physiol Mol Biol, 2002, 28(5): 385390.(in Chinese with English abstract)
[10]Lin J, Wang Y, Wang G. Salt stressinduced programmed cell death in tobacco protoplasts is mediated by reactive oxygen species and mitochondrial permeability transition pore status. J Plant Physiol, 2006, 163(7): 731739.
[11]苏芳莉, 李海福, 陈曦, 等. 盐胁迫对芦苇细胞超微结构的影响. 西北植物学报, 2012, 31(11): 22162221.
Su F L, Li H F, Chen X, et al. Effect of salt stress on the ultrastructure of reed cell. Acta Bot Bororeal Occident Sin, 2012, 31(11): 22162221.(in Chinese with English abstract)
[12]张振华, 刘强, 宋海星, 等. K+,Ca2+和Mg2+对不同水稻(Oryza sativa L.)基因型苗期耐盐性的影响. 中国农业科学, 2010, 43(15): 30883097.
Zhang Z H, Liu Q, Song H X, et al. The salinity tolerance of rice (Oryza sativa L.) genotypes as affected by nutrients (K+, Ca2+ and Mg2+) at seedling stage. China Agric Sci, 2010, 43(15): 30883097.(in Chinese with English abstract)
[13]Yuan H J, Ma Q, Wu G Q, et al. ZxNHX controls Na+ and K+ homeostasis at the wholeplant level in Zygophyllum xanthoxylum through feedback regulation of the expression of genes involved in their transport. Annals Bot, 2015,115(3): 495507.
[14]Deinlein U, Stephan A B, Horie T, et al. Plant salttolerance mechanisms. Trends Plant Sci, 2014, 19(6): 371379.
[15]Geng Y, Wu R, Wee CW, et al. A spatiotemporal understanding of growth regulation during the salt stress response in Arabidopsis. Plant Cell, 2013,25(6): 21322154.
[16]Jabeen N, Ahmad R. The activity of antioxidant enzymes in response to salt stress in safflower (Carthamus tinctorius L.) and sunflower (Helianthus annuus L.) seedlings raised from seed treated with chitosan. J Sci Food Agric, 2013, 93(7): 16991705.
[17]Xu G Y, Rocha P S, Wang M L, et al. A novel rice calmodulinlike gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta, 2011, 234(1): 4759.
[18]Kumari S, Joshi R, Singh K, et al. Expression of a cyclophilin OsCyp2P isolated from a salttolerant landrace of rice in tobacco alleviates stress via ion homeostasis and limiting ROS accumulation. Funct & Integr Genom, 2015,15(4): 395412.
[19]Yang A, Dai X, Zhang WH. A R2R3type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot, 2012, 63(7): 25412556.
[20]Barrero J M, Rodriguez PL, Quesada V, et al. Both abscisic acid (ABA)dependent and ABAindependent pathways govern the induction of NCED3, AAO3 and ABA1 in response to salt stress. Plant, Cell & Environ, 2006, 29(10): 20002008.
[21]Moons A, Gielen J, Vandekerckhove J, et al. An abscisicacid and saltstressresponsive rice cDNA from a novel plant gene family. Planta. 1997,202(4): 443454.
[22]Rio D C, Ares M, Jr., Hannon G J, et al. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harbor Protoc, 2010, 2010(6): pdb.prot5439.
[23]周洁, 王栩鸣, 陈斌, 等. 基于Gateway技术的低成本植物双分子荧光互补分析系统. 浙江农业学报, 2013, 25(5): 10241030.
Zhou J, Wang X M, Chen B, et al. Lowcost gatewaycompatible bimolecular fluorescence complementation assay system. Acta Agric Zhejiangensis, 2013, 25(5): 10241030.(in Chinese with English abstract)
[24]Sambrook J, Russell D W. The inoue method for preparation and transformation of competent E. coli: “Ultracompetent”cells. CSH Protocols, 2006, 2006(1): 16.
[25]李茹, 周洁, 李冬月, 等. 水稻 OsWRKY7基因的表达研究. 中国水稻科学, 2015, 29(6): 559570.
Li R, Zhou J, Li D Y, et al. Expression of OsWRKY7 in rice. Chin J Rice Sci, 2015, 29(6): 559570.(in Chinese with English abstract)
[26]Gao C, Long D, Lenk I, et al. Comparative analysis of transgenic tall fescue (Festuca arundinacea Schreb.) plants obtained by Agrobacteriummediated transformation and particle bombardment. Plant Cell Rep, 2008, 27(10): 16011609.
[27]Wang H, Qi M, Cutler A J. A simple method of preparing plant samples for PCR. Nucleic Acids Res, 1993, 21(17): 41534154.
[28]Ye S, Wang L, Xie W, et al. Expression profile of calciumdependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (Oryza sativa L. ssp. indica). Plant Mol Biol, 2009, 70(3): 311325.
[29] Ohta M, Hayashi Y, Nakashima A, et al. Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett. 2002, 532(3): 279282.
[30]Jan A, Maruyama K, Todaka D, et al. OsTZF1, a CCCHtandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stressrelated genes. Plant Physiol, 2013, 161(3): 12021216.
[31] 李南羿, 郭泽建. 转录因子OPBP1和OsiWRKY基因的超表达提高水稻的耐盐及抗病能力. 中国水稻科学, 2006, 20(1):1318.
LI N Y, GUO Z J. Overexpression of two different transcription factors, OPBP1 and OsiWRKY, enhances resistance against pathogen attack and salt stress in rice. Chin J Rice Sci, 2006, 20(1): 1318.(in Chinese with English abstract)
[32]黑倩, 张辉, 黄继斌, 等. 过量表达AtNHXS1新基因显著提高水稻的耐盐性. 华中农业大学学报, 2012, 31(5): 529535.
Hei Q,Zhang H, Huang J B, et al. Overexpress on a shuffled Na+/H+ antiporter gene AtNHXS1 improving salt tolerance of rice(Oryza sative L.). J Huazhong Agric Univ, 2012, 31(5): 529535.
|