中国水稻科学 ›› 2024, Vol. 38 ›› Issue (6): 591-603.DOI: 10.16819/j.1001-7216.2024.230911
• 综述与专论 • 下一篇
杨婕, 杨长登, 曾宇翔, 侯雨萱, 陈天晓*(), 梁燕*()
收稿日期:
2023-09-22
修回日期:
2024-01-06
出版日期:
2024-11-10
发布日期:
2024-11-15
通讯作者:
陈天晓,梁燕
基金资助:
YANG Jie, YANG Changdeng, ZENG Yuxiang, HOU Yuxuan, CHEN Tianxiao*(), LIANG Yan*()
Received:
2023-09-22
Revised:
2024-01-06
Online:
2024-11-10
Published:
2024-11-15
Contact:
CHEN Tianxiao, LIANG Yan
摘要:
稻瘟病是一种由子囊菌(Magnaporthe oryzae)引起的病害,严重危害水稻的产量和品质。培育和种植抗病品种是控制稻瘟病最经济有效的措施。抗性基因的挖掘与利用是培育抗病品种的基础和关键。本文针对这个科学问题,总结了目前主流的稻瘟病抗性基因的挖掘技术,对已克隆的稻瘟病抗性基因及其应用现状进行梳理和分析;并对稻瘟病抗性基因挖掘利用以及未来发展方向进行展望。
杨婕, 杨长登, 曾宇翔, 侯雨萱, 陈天晓, 梁燕. 水稻稻瘟病抗性基因挖掘与利用研究进展[J]. 中国水稻科学, 2024, 38(6): 591-603.
YANG Jie, YANG Changdeng, ZENG Yuxiang, HOU Yuxuan, CHEN Tianxiao, LIANG Yan. Research Progress in Mining and Utilization of Rice Blast Resistance Genes[J]. Chinese Journal OF Rice Science, 2024, 38(6): 591-603.
基因 Gene | 染色体 Chr. | 供体 Donor | 编码蛋白 Encoded protein | 克隆方法 Cloning strategy | 参考文献 Reference |
---|---|---|---|---|---|
Pi-t | 1 | K59 | CC-NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi37 | 1 | St. No.1 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pish | 1 | Shin-2 | NBS-LRR | 转座子标签 Retrotransposon-tagging | [ |
Pi35 | 1 | Hokkai188 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi64 | 1 | 羊毛谷Yangmaogu | NBS-LRR | 图位克隆 Map-based cloning | [ |
RBL1Δ12 | 1 | Lesion mimic mutant (LMM) | - | 全基因组测序 Whole genome sequencing | [ |
Pib | 2 | Tohoku IL9 | NBS LRR | 图位克隆 Map-based cloning | [ |
bsr-d1 | 3 | 地谷Digu | MYB 转录因子 | 全基因组关联分析 GWAS | [ |
pi21 | 4 | Owarihatamochi | 富含脯氨酸蛋白 Proline-rich protein | 图位克隆 Map-based cloning | [ |
Pi63 | 4 | Kahei | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi2 | 6 | C101A51 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi9 | 6 | 75-1-127 | NBS LRR | 图位克隆 Map-based cloning | [ |
Piz-t | 6 | Toride 1 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pigm | 6 | 谷梅4号 Gumei4 | NBS-LRR | 等位基因挖掘 Allele-mining | [ |
Pid2 | 6 | 地谷Digu | RLK | 图位克隆 Map-based cloning | [ |
Pid3 | 6 | 地谷 Digu | NBS-LRR | 电子图位克隆 Electronic map-based cloning | [ |
Pi25 | 6 | 谷梅2号 Gumei2 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pid3A4 | 6 | 谷梅2号 Gumei2 | NBS-LRR | 等位基因挖掘 Allele-mining | [ |
Pi50 | 6 | 二八占Erbazhan | NBS-LRR | 等位基因挖掘 Allele-mining | [ |
Pi36 | 8 | Q61 | CC-NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi33 | 8 | IR64 | NBS-LRR | - | [ |
Pi5/Pi3/Pii | 9 | Tetep | CC-NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi56 | 9 | 三黄占2号 Sanhuangzhan2 | NBS-LRR | 图位克隆 Map-based cloning | [ |
bsr-k1 | 10 | 突变体 Mutant | 富含 TPRs 蛋白 TPRs-rich protein | 图位克隆 Map-based cloning | [ |
Pia | 11 | Aichi Asahi | CC-NBS-LRR | 多种基因组学方法综合 Multifaceted genomics approach | [ |
Pi-CO39(t) | 11 | CO39 | NBS-LRR | 无毒基因与抗性基因蛋白互作 In vivo AVR-R protein interaction | [ |
Pi54/Pikh | 11 | K3 | NBS-LRR | 图位克隆Map-based cloning | [ |
Pi54rh | 11 | nrcpb 002 | NBS-LRR | 等位基因挖掘Allele-mining | [ |
Pi54of | 11 | nrcpb 004 | NBS-LRR | 等位基因挖掘Allele-mining | [ |
Pik | 11 | Kusabue | CC-NBS-LRR | 图位克隆Map-based cloning | [ |
Pi1 | 11 | C101LAC | NBS-LRR | 图位克隆Map-based cloning | [ |
Pikm | 11 | Tsuyuake | NBS-LRR | 图位克隆Map-based cloning | [ |
Pikp | 11 | K60 | CC-NBS-LRR | 电子图位克隆Electronic map-based cloning | [ |
Pike | 11 | 湘早143 Xiangzao 143 | NBS-LRR | 图位克隆Map-based cloning | [ |
Piks | 11 | Shin2 | NBS-LRR | - | [ |
Pbl | 11 | Modan | CC-NBS-LRR | 图位克隆Map-based cloning | [ |
Pi-ta | 12 | Yashiro-mochi | NBS-LRR | 图位克隆Map-based cloning | [ |
Ptr | 12 | M2354 | 富含ARM 蛋白ARM-rich protein | - | [ |
Pijx | 12 | 野生稻Wild rice | CC-NBS-LRR | 全基因组关联分析GWAS | [ |
表1 已克隆的稻瘟病抗性基因
Table 1. Cloned rice blast resistance genes
基因 Gene | 染色体 Chr. | 供体 Donor | 编码蛋白 Encoded protein | 克隆方法 Cloning strategy | 参考文献 Reference |
---|---|---|---|---|---|
Pi-t | 1 | K59 | CC-NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi37 | 1 | St. No.1 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pish | 1 | Shin-2 | NBS-LRR | 转座子标签 Retrotransposon-tagging | [ |
Pi35 | 1 | Hokkai188 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi64 | 1 | 羊毛谷Yangmaogu | NBS-LRR | 图位克隆 Map-based cloning | [ |
RBL1Δ12 | 1 | Lesion mimic mutant (LMM) | - | 全基因组测序 Whole genome sequencing | [ |
Pib | 2 | Tohoku IL9 | NBS LRR | 图位克隆 Map-based cloning | [ |
bsr-d1 | 3 | 地谷Digu | MYB 转录因子 | 全基因组关联分析 GWAS | [ |
pi21 | 4 | Owarihatamochi | 富含脯氨酸蛋白 Proline-rich protein | 图位克隆 Map-based cloning | [ |
Pi63 | 4 | Kahei | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi2 | 6 | C101A51 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi9 | 6 | 75-1-127 | NBS LRR | 图位克隆 Map-based cloning | [ |
Piz-t | 6 | Toride 1 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pigm | 6 | 谷梅4号 Gumei4 | NBS-LRR | 等位基因挖掘 Allele-mining | [ |
Pid2 | 6 | 地谷Digu | RLK | 图位克隆 Map-based cloning | [ |
Pid3 | 6 | 地谷 Digu | NBS-LRR | 电子图位克隆 Electronic map-based cloning | [ |
Pi25 | 6 | 谷梅2号 Gumei2 | NBS-LRR | 图位克隆 Map-based cloning | [ |
Pid3A4 | 6 | 谷梅2号 Gumei2 | NBS-LRR | 等位基因挖掘 Allele-mining | [ |
Pi50 | 6 | 二八占Erbazhan | NBS-LRR | 等位基因挖掘 Allele-mining | [ |
Pi36 | 8 | Q61 | CC-NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi33 | 8 | IR64 | NBS-LRR | - | [ |
Pi5/Pi3/Pii | 9 | Tetep | CC-NBS-LRR | 图位克隆 Map-based cloning | [ |
Pi56 | 9 | 三黄占2号 Sanhuangzhan2 | NBS-LRR | 图位克隆 Map-based cloning | [ |
bsr-k1 | 10 | 突变体 Mutant | 富含 TPRs 蛋白 TPRs-rich protein | 图位克隆 Map-based cloning | [ |
Pia | 11 | Aichi Asahi | CC-NBS-LRR | 多种基因组学方法综合 Multifaceted genomics approach | [ |
Pi-CO39(t) | 11 | CO39 | NBS-LRR | 无毒基因与抗性基因蛋白互作 In vivo AVR-R protein interaction | [ |
Pi54/Pikh | 11 | K3 | NBS-LRR | 图位克隆Map-based cloning | [ |
Pi54rh | 11 | nrcpb 002 | NBS-LRR | 等位基因挖掘Allele-mining | [ |
Pi54of | 11 | nrcpb 004 | NBS-LRR | 等位基因挖掘Allele-mining | [ |
Pik | 11 | Kusabue | CC-NBS-LRR | 图位克隆Map-based cloning | [ |
Pi1 | 11 | C101LAC | NBS-LRR | 图位克隆Map-based cloning | [ |
Pikm | 11 | Tsuyuake | NBS-LRR | 图位克隆Map-based cloning | [ |
Pikp | 11 | K60 | CC-NBS-LRR | 电子图位克隆Electronic map-based cloning | [ |
Pike | 11 | 湘早143 Xiangzao 143 | NBS-LRR | 图位克隆Map-based cloning | [ |
Piks | 11 | Shin2 | NBS-LRR | - | [ |
Pbl | 11 | Modan | CC-NBS-LRR | 图位克隆Map-based cloning | [ |
Pi-ta | 12 | Yashiro-mochi | NBS-LRR | 图位克隆Map-based cloning | [ |
Ptr | 12 | M2354 | 富含ARM 蛋白ARM-rich protein | - | [ |
Pijx | 12 | 野生稻Wild rice | CC-NBS-LRR | 全基因组关联分析GWAS | [ |
[1] | Oliveira-Garcia E, Yan X, Oses-Ruiz M, de Paula S, Talbot N J. Effector-triggered susceptibility by the rice blast fungus Magnaporthe oryzae[J]. New Phytologist, 2023, 241(3): 1007-1020. |
[2] | Simkhada K, Thapa R R. Rice blast, a major threat to the rice production and its various management techniques[J]. Turkish Journal of Agriculture, 2022, 10: 147-157. |
[3] | Pennisi E. Armed and dangerous[J]. Science, 2010, 327(5967): 804-805. |
[4] | Zhu Z, Xiong J, Shi H, Liu Y, Yin J, He K, Zhou T, Xu L, Zhu X, Lu X, Tang Y, Song L, Hou Q, Xiong Q, Wang L, Ye D, Qi T, Zou L, Li G, Sun C, Wu Z, Li P, Liu J, Bi Y, Yang Y, Jiang C, Chen X, Li W. Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis[J]. Nature Communications, 2023, 14(1): 8399. |
[5] | Johal G S, Briggs S P. Reductase activity encoded by the HM1 disease resistance gene in maize[J]. Science, 1992, 258(5084): 985-987. |
[6] | Sindhu A, Chintamanani S, Brandt A S, Zanis M, Scofield S R, Johal G S. A guardian of grasses: Specific origin and conservation of a unique disease-resistance gene in the grass lineage[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(5): 1762-1767. |
[7] | Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes[J]. Plant Journal, 1999, 19(1): 55-64. |
[8] | Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice[J]. Genetics, 2006, 172(3): 1901-1914. |
[9] | Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao W, Wang J, Li W, He M, Ma B, Wang J, Qin P, Chen W, Wang Y, Liu J, Qian Y, Wang W, Wu X, Li P, Zhu L, Li S, Ronald P C, Chen X. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 3174-3179. |
[10] | Liu G, Lu G, Zeng L, Wang G L. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6[J]. Molecular Genetics and Genomics, 2002, 267(4): 472-480. |
[11] | Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J]. Cell, 2017, 170(1): 114-126. |
[12] | Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao W, Wang J, Li W, He M, Ma B, Wang J, Qin P, Chen W, Wang Y, Liu J, Qian Y, Wang W, Wu X, Li P, Zhu L, Li S, Ronald P C, Chen X. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 3174-3179. |
[13] | Coulson A, Sulston J, Brenner S, Karn J. Toward a physical map of the genome of the nematode Caenorhabditis elegans[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(20): 7821-7825. |
[14] | Vossen J H, Kwang-Ryong J, Vosman B. Mining the genus solanum for increasing disease resistance[J]. Genomics of Plant Genetic Resources, 2014(2): 27-46. |
[15] | Xie Z, Yan B, Shou J, Tang J, Wang X, Zhai K, Liu J, Li Q, Luo M, Deng Y, He Z. A nucleotide-binding site-leucine-rich repeat receptor pair confers broad-spectrum disease resistance through physical association in rice[J]. Philosophical Transactions of the Royal Society Biological Sciences, 2019, 374(1767): 20180308. |
[16] | Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice[J]. Science, 2009, 325(5943): 998-1001. |
[17] | Zhou Y, Lei F, Wang Q, He W, Yuan B, Yuan W. Identification of novel alleles of the rice blast-resistance gene Pi9 through sequence-based allele mining[J]. Rice, 2020, 13(1): 80. |
[18] | Lü Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L. Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice[J]. Phytopathology, 2013, 103(6): 594. |
[19] | Devanna N B, Vijayan J, Sharma T R. The blast resistance gene Pi54 of cloned from Oryza officinalis interacts with Avr-Pi54 through its novel non-LRR domains[J]. Public Library of Science ONE, 2014, 9(8): e104840. |
[20] | Das A, Soubam D, Singh P K, Thakur S, Singh N K, Sharma T R. A novel blast resistance gene, Pi54rh cloned from wild species of rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae[J]. Functional and Integrative Genomics, 2012, 12: 215-228. |
[21] | 朱正歌, 孙宗修. 转座子标签法克隆水稻基因前景[J]. 中国水稻科学, 2001(1): 47-51. |
Zhu Z G, Sun Z X. Prospect of cloning rice gene with transposable element tagging[J]. Chinese Journal of Rice Science, 2001(1): 47-51. (in Chinese with English abstract) | |
[22] | Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging[J]. BMC Plant Biology, 2010, 10: 175. |
[23] | Lv Y, Ma J, Wei H, Xiao F, Wang Y Y, Jahan N, Hazman M, Qian Q, Shang L G, Guo L B. Combining GWAS, genome-wide domestication and a transcriptomic analysis reveals the loci and natural alleles of salt tolerance in rice (Oryza sativa L.)[J]. Frontiers in Plant Science, 2022(7): 13. |
[24] | Xiao N, Wu Y, Zhang X, Hao Z, Chen Z, Yang Z, Cai Y, Wang R, Yu L, Wang Z, Lu Y, Shi W, Pan C, Li Y, Zhou C, Liu J, Huang N, Liu G, Ji H, Zhu S, Fang S, Ning Y, Li A. Pijx confers broad-spectrum seedling and panicle blast resistance by promoting the degradation of ATP β subunit and OsRbohC-mediated ROS burst in rice[J]. Molecular Plant, 2023, 16(11): 1832-1846. |
[25] | Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J]. Cell, 2017, 170(1): 114-126. |
[26] | Kalia S, Rathour R. Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice[J]. 3 Biotechnology, 2019, 9(6): 209. |
[27] | Zeng X, Yang X, Zhao Z, Lin F, Wang L, Pan Q. Characterization and fine mapping of the rice blast resistance gene Pia[J]. Science China: Life Sciences, 2011, 54(4): 372-378. |
[28] | 黄衍焱, 李燕, 王贺, 王文明. 水稻小种特异性抗稻瘟病基因的等位性变异研究进展[J]. 植物病理学报, 2023, 1-16. |
Huang Y Y, Li Y, Wang H, Wang W M. Allelic variation in the race-specific blast resistance genes in the rice[J]. Acta Phytopathologica Sinica, 2023: 1-16. (in Chinese with English abstract) | |
[29] | Yu Z H, Mackill D J, Bonman J M, McCouch S R, Guiderdoni E, Notteghem J L, Tanksley S D. Molecular mapping of genes for resistance to rice blast (Pyricularia grisea Sacc.)[J]. Theoretical and Applied Genetics, 1996, 93(5-6): 859-863. |
[30] | Hittalmani S, Parco A S, Mew T I, Zeigler R S, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J]. Theoretical and Applied Genetics, 2000, 100: 1121-1128. |
[31] | 朱立煌, 徐吉臣, 陈英. 用分子标记定位一个未知的抗稻瘟病基因[J]. 中国科学, 1994(10): 1048-1052. |
Zhu L H, Xu J C, Chen Y. Mapping an unknown rice blast resistance gene with molecular markers[J]. Science in China, 1994(10): 1048-1052. (in Chinese with English abstract) | |
[32] | 江南, 刘雄伦, 戴良英, 王国梁. 水稻抗稻瘟病基因的定位与克隆研究进展[J]. 中国农学通报, 2010, 26(10): 270-275. |
Jiang N, Liu X L, Dai L Y, Wang G L. Advances on the mapping and cloning of blast resistance gene in rice[J]. Chinese Agricultural Science Bulletin, 2010, 26(10): 270-275. (in Chinese with English abstract) | |
[33] | 朱献丰. 水稻稻瘟病抗性遗传及基因定位研究[D]. 杭州: 浙江大学, 2002. |
Zhu X F. Inheritance and mapping of blast resistance in rice[D]. Hangzhou: Zhejiang University, 2002. | |
[34] | 吴金红, 蒋江松, 陈惠兰, 王石平. 水稻稻瘟病抗性基因Pi-2(t)的精细定位[J]. 作物学报, 2002, 28(4): 505-509. |
Wu J H, Jiang J S, Chen H L, Wang S P. Fine mapping of rice blast resistance gene Pi-2(t)[J]. Acta Agronomica Sinica, 2002, 28(4): 505-509. (in Chinese with English abstract) | |
[35] | 吴俊, 刘雄伦, 戴良英, 王国梁. 水稻广谱抗稻瘟病基因研究进展[J]. 生命科学, 2007, 19(2): 233-238. |
Wu J, Liu X L, Dai L Y, Wang G L. Advances on the identification and characterization of broadspectrum blast resistance genes in rice[J]. Chinese Bulletin of Life Sciences, 2007, 19(2): 233-238. (in Chinese with English abstract) | |
[36] | Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M H, Tharreau D. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1[J]. Theoretical and Applied Genetics, 2003, 107(6): 1139. |
[37] | Chen H L, Chen B T, Zhang D P, Xie Y F, Zhang Q. Pathotypes of Pyricularia grisea in rice fields of central and southern China[J]. Plant Disease, 2001, 85: 843-850. |
[38] | Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 2006, 19(11): 1216-1228. |
[39] | 曹妮, 陈渊, 季芝娟, 曾宇翔, 杨长登, 梁燕. 水稻抗稻瘟病分子机制研究进展[J]. 中国水稻科学, 2019, 33(6): 489-498. |
Cao N, Chen Y, Ji Z J, Zeng Y X, Yang C D, Liang Y. Recent progress in molecular mechanism of rice blast resistance[J]. Chinese Journal of Rice Science, 2019, 33(6): 489-498. (in Chinese with English abstract) | |
[40] | Wang L, Ma Z, Zhao J, Gu S, Gao L, Mukhina Z M, Ma D, Zheng W. Progress on mapping, cloning and application of rice blast resistance genes[J]. Pakistan Journal of Botany, 2022, 54(6): 2363-2375. |
[41] | Wang Z X, Yamanouchi U, Katayose Y, Sasaki T, Yano M. Expression of the Pib rice-blast-resistance gene family is up-regulated by environmental conditions favouring infection and by chemical signals that trigger secondary plant defenses[J]. Plant Molecular Biology, 2001, 47(5): 653-661. |
[42] | Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia M H, Famoso A, Edwards J D, Wamishe Y, Valent B, Wang G L, Yang Y. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance[J]. Nature Communications, 2018, 9(1): 2039. |
[43] | Kiyosawa S, Terui Y, Ling Z Z, Heu M H. The Inheritance of blast resistance of an IRRI’s rice variety, IR1905-81-3-1[J]. Breeding Science, 1983, 33: 31-39. |
[44] | Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia M H, Famoso A, Edwards J D, Wamishe Y, Valent B, Wang G L. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance[J]. Nature Communications, 2018, 9(1): 2039. |
[45] | Hayashi K, Yoshida H. Refunctionalization of the ancient rice blast disease resistance gene Pit by the recruitment of a retrotransposon as a promoter[J]. Plant Journal, 2009, 57(3): 413-425. |
[46] | Lin F, Chen S, Que Z, Wang L, Liu X, Pan Q. The blast resistance gene Pi37 encodes a nucleotide binding site leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1[J]. Genetics, 2007, 177(3): 1871-1880. |
[47] | Takahashi A, Hayashi N, Miyao A, Hirochika H. Unique features of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging[J]. BMC Plant Biology, 2010, 10: 175. |
[48] | Fukuoka S, Yamamoto S, Mizobuchi R, Yamanouchi U, Ono K, Kitazawa N, Yasuda N, Fujita Y, Thi Thanh Nguyen T, Koizumi S, Sugimoto K, Matsumoto T, Yano M. Multiple functional polymorphisms in a single disease resistance gene in rice enhance durable resistance to blast[J]. Scientific Reports, 2014, 4: 4550. |
[49] | Ma J, Lei C, Xu X, Hao K, Wang J, Cheng Z, Ma X, Ma J, Zhou K, Zhang X, Guo X, Wu F, Lin Q, Wang C, Zhai H, Wang H, Wan J. Pi64, encoding a novel CC-NBS-LRR protein, confers resistance to leaf and neck blast in rice[J]. Molecular Plant-Microbe Interactions, 2015, 28(5): 558-568. |
[50] | Sha G, Sun P, Kong X, Han X, Sun Q, Fouillen L, Zhao J, Li Y, Yang L, Wang Y, Gong Q, Zhou Y, Zhou W, Jain R, Gao J, Huang R, Chen X, Zheng L, Zhang W, Qin Z, Zhou Q, Zeng Q, Xie K, Xu J, Chiu T Y, Guo L, Mortimer J C, Boutté Y, Li Q, Kang Z, Ronald P C, Li G. Genome editing of a rice CDP-DAG synthase confers multipathogen resistance[J]. Nature, 2023, 618(7967): 1017-1023. |
[51] | Wang Z X, Yano M, Yamanouchi U, Iwamoto M, Monna L, Hayasaka H, Katayose Y, Sasaki T. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes[J]. Plant Journal, 1999, 19(1): 55-64. |
[52] | Li W, Zhu Z, Chern M, Yin J, Yang C, Ran L, Cheng M, He M, Wang K, Wang J, Zhou X, Zhu X, Chen Z, Wang J, Zhao W, Ma B, Qin P, Chen W, Wang Y, Liu J, Wang W, Wu X, Li P, Wang J, Zhu L, Li S, Chen X. A natural allele of a transcription factor in rice confers broad-spectrum blast resistance[J]. Cell, 2017, 170(1): 114-126. |
[53] | Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M. Loss of function of a proline-containing protein confers durable disease resistance in rice[J]. Science, 2009, 325(5943): 998-1001. |
[54] | Xu X, Hayashi N, Wang C, Fukuoka S, Kawasaki S, Takatsuji H, Jiang C. Rice blast resistance gene Pikahei-1(t), a member of a resistance gene cluster on chromosome 4, encodes a nucleotide-binding site and leucine-rich repeat protein[J]. Molecular Breeding, 2014, 34: 691-700. |
[55] | Zhou B, Qu S, Liu G, Dolan M, Sakai H, Lu G, Bellizzi M, Wang G L. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnaporthe grisea[J]. Molecular Plant-Microbe Interactions, 2006, 19(11): 1216-1228. |
[56] | Qu S, Liu G, Zhou B, Bellizzi M, Zeng L, Dai L, Han B, Wang G L. The broad-spectrum blast resistance gene Pi9encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics[J], 2006, 172(3): 1901-1914. |
[57] | Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z. Epigenetic regulation of antagonistic receptors confers rice blast resistance with yield balance[J]. Science, 2017, 355(6328): 962-965. |
[58] | Chen X, Shang J, Chen D, Lei C, Zou Y, Zhai W, Liu G, Xu J, Ling Z, Cao G, Ma B, Wang Y, Zhao X, Li S, Zhu L. A B-lectin receptor kinase gene conferring rice blast resistance[J]. Plant Journal, 2006, 46(5): 794-804. |
[59] | Shang J, Tao Y, Chen X, Zou Y, Lei C, Wang J, Li X, Zhao X, Zhang M, Lu Z, Xu J, Cheng Z, Wan J, Zhu L. Identification of a new rice blast resistance gene, Pid3, by genomewide comparison of paired nucleotide-binding site-leucine-rich repeat genes and their pseudogene alleles between the two sequenced rice genomes[J]. Genetics, 2009, 182(4): 1303-1311. |
[60] | Chen J, Shi Y, Liu W, Chai R, Fu Y, Zhuang J, Wu J. A Pid3 allele from rice cultivar Gumei 2 confers resistance to Magnaporthe oryzae[J]. Journal of Genetics and Genomics, 2011, 38(5): 209-216. |
[61] | Peng M, Lin X, Xiang X, Ren H, Fan X, Chen K. Characterization and evaluation of transgenic rice Pyramided with the Pi genes Pib, Pi25 and Pi54[J]. Rice, 2021, 14(1): 78. |
[62] | Lü Q, Xu X, Shang J, Jiang G, Pang Z, Zhou Z, Wang J, Liu Y, Li T, Li X, Xu J, Cheng Z, Zhao X, Li S, Zhu L. Functional analysis of Pid3-A4, an ortholog of rice blast resistance gene Pid3 revealed by allele mining in common wild rice[J]. Phytopathology, 2013, 103(6): 594. |
[63] | Zhu X, Chen S, Yang J, Zhou S, Zeng L, Han J, Su J, Wang L, Pan Q. The identification of Pi50(t), a new member of the rice blast resistance Pi2/Pi9 multigene family[J]. Theoretical and Applied Genetics, 2012, 124(7): 1295-1304. |
[64] | Liu X, Lin F, Wang L, Pan Q. The in silico map-based cloning of Pi36, a rice coiled-coil nucleotide-binding site leucine-rich repeat gene that confers race-specific resistance to the blast fungus[J]. Genetics, 2007, 176(4): 2541-2549. |
[65] | Berruyer R, Adreit H, Milazzo J, Gaillard S, Berger A, Dioh W, Lebrun M H, Tharreau D. Identification and fine mapping of Pi33, the rice resistance gene corresponding to the Magnaporthe grisea avirulence gene ACE1[J]. Theoretical and Applied Genetics, 2003, 107(6): 1139. |
[66] | Lee S K, Song M Y, Seo Y S, Kim H K, Ko S, Cao P J, Suh J P, Yi G, Roh J H, Lee S, An G, Hahn T R, Wang GL, Ronald P, Jeon J S. Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucine-rich repeat genes[J]. Genetics, 2009, 181(4): 1627-1638. |
[67] | Takagi H, Uemura A, Yaegashi H, Tamiru M, Abe A, Mitsuoka C, Utsushi H, Natsume S, Kanzaki H, Matsumura H, Saitoh H, Yoshida K, Cano L M, Kamoun S, Terauchi R. MutMap-Gap: Whole-genome resequencing of mutant F2 progeny bulk combined with de novo assembly of gap regions identifies the rice blast resistance gene Pii[J]. New Phytologist, 2013, 200(1): 276-283. |
[68] | Liu Y, Liu B, Zhu X, Yang J, Bordeos A, Wang G, Leach J E, Leung H. Fine-mapping and molecular marker development for Pi56(t), a NBS-LRR gene conferring broad-spectrum resistance to Magnaporthe oryzae in rice[J]. Theoretical and Applied Genetics, 2013, 126(4): 985-998. |
[69] | Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao W, Wang J, Li W, He M, Ma B, Wang J, Qin P, Chen W, Wang Y, Liu J, Qian Y, Wang W, Wu X, Li P, Zhu L, Li S, Ronald P C, Chen X. Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(12): 3174-3179. |
[70] | Okuyama Y, Kanzaki H, Abe A, Yoshida K, Tamiru M, Saitoh H, Fujibe T, Matsumura H, Shenton M, Galam D C, Undan J, Ito A, Sone T, Terauchi R. A multifaceted genomics approach allows the isolation of the rice Pia-blast resistance gene consisting of two adjacent NBS-LRR protein genes[J]. Plant Journal, 2011, 66: 467-479. |
[71] | Chauhan R S, Farman M L, Zhang H B, Leong S A. Genetic and physical mapping of a rice blast resistance locus, Pi-CO39(t), that corresponds to the avirulence gene AVR1-CO39 of Magnaporthe grisea[J]. Molecular Genetics and Genomics, 2002, 267(5): 603-612. |
[72] | Das A, Soubam D, Singh P K, Thakur S, Singh N K, Sharma T R. A novel blast resistance gene, Pi54rh cloned from wild rice, Oryza rhizomatis confers broad spectrum resistance to Magnaporthe oryzae[J]. Functional and Integrative Genomics, 2012, 12(2): 215-228. |
[73] | Devanna N B, Vijayan J, Sharma T R. Blast resistance gene Pi54 of cloned from Oryza officinalis interacts with Avr-Pi54through its novel non-LRR domains[J]. PLoS ONE, 2014, 9(8): e104840. |
[74] | Sharma T R, Madhav M S, Singh B K, Shanker P, Jana T K, Dalal V, Pandit A, Singh A, Gaikwad K, Upreti H C, Singh N K. High-resolution mapping, cloning and molecular characterization of the Pi-k(h) gene of rice, which confers resistance to Magnaporthe grisea[J]. Molecular Genetics and Genomics, 2005, 274(6): 569. |
[75] | Hua L X, Wu J, Chen C, Wu W, He X, Lin F, Wang L, Ashikawa I, Matsumoto T, Wang L, Pan Q. The isolation of Pi1, an allele at the Pik locus which confers broad spectrum resistance to rice blast[J]. Theoretical and Applied Genetics, 2012, 125(5): 1047-1055. |
[76] | Zhai C, Lin F, Dong Z, He X, Yuan B, Zeng X, Wang L, Pan Q. The isolation and characterization of Pik, a rice blast resistance gene which emerged after rice domestication[J]. New Phytologist, 2011, 189(1): 321. |
[77] | Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M. Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance[J]. Genetics, 2008, 180(4): 2267-2276. |
[78] | Yuan B, Zhai C, Wang W, Zeng X, Xu X, Hu H, Lin F, Wang L, Pan Q. The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes[J]. Theoretical and Applied Genetics, 2011, 122(5): 1017-1028. |
[79] | Chen J, Peng P, Tian J, He Y, Zhang L, Liu Z, Yin D, Zhang Z. Pike, a rice blast resistance allele consisting of two adjacent NBS-LRR genes, was identified as a novel allele at the Pik locus[J]. Molecular Breeding, 2015, 35: 1-15. |
[80] | Fjellstrom R G, Conaway-Bormans C A, McClung A M, Marchetti M A, Shank A R, Park W D. Development of DNA markers suitable for marker assisted selection of three Pi genes conferring resistance to multiple Pyricularia grisea pathotypes[J]. Crop Science, 2004, 44: 1790-1798. |
[81] | Hayashi N, Inoue H, Kato T, Funao T, Shirota M, Shimizu T, Kanamori H, Yamane H, Hayano-Saito Y, Matsumoto T, Yano M, Takatsuji H. Durable panicle blast-resistance gene Pb1 encodes an atypical CC-NBS-LRR protein and was generated by acquiring a promoter through local genome duplication[J]. Plant Journal, 2010, 64(3): 498-510. |
[82] | Bryan G T, Wu K S, Farrall L, Jia Y, Hershey H P, McAdams S A, Faulk K N, Donaldson G K, Tarchini R, Valent B. A single amino acid difference distinguishes resistant and susceptible alleles of the rice blast resistance gene Pi-ta[J]. Plant Cell, 2000, 12(11): 2033-2046. |
[83] | Zhao H, Wang X, Jia Y, Minkenberg B, Wheatley M, Fan J, Jia M H, Famoso A, Edwards J D, Wamishe Y, Valent B, Wang G L, Yang Y. The rice blast resistance gene Ptr encodes an atypical protein required for broad-spectrum disease resistance[J]. Nature Communications, 2018, 9(1): 2039. |
[84] | 郑九如, 文彬, 林荣光, 郑回勇. 发掘水稻系谱法籼粳亚种间杂交优势培育超高产品种[J]. 福建稻麦科技, 1991(2): 10-12. |
Zheng J R, Lin W B, Lin R G, Zheng H Y. Exploring the heterosis of indica-japonica subspecies hybridization by rice pedigree method to cultivate super high yield varieties[J]. Fujian Science and Technology of Rice and Wheat, 1991(2): 10-12. (in Chinese with English abstract) | |
[85] | 况浩池, 曾正明, 蒋钰东, 罗俊涛, 杨扬, 陈光珍, 何兴材, 付均. 高抗稻瘟病三系杂交稻恢复系泸恢37的选育及应用[J]. 中国稻米, 2016, 22(1): 97-99. |
Kuang H C, Zeng Z M, Jiang Y D, Luo J T, Yang Y, Chen G Z, He X C, Fu J. Breeding and application of high blast resistance restorer line Luhui 37 in three-line hybrid rice[J]. China Rice, 2016, 22(1): 97-99. (in Chinese with English abstract) | |
[86] | 王桂玲, 杭秋瑜, 刘乃生, 马文东, 宋成艳, 陆文静, 周雪松, 韩笑. 龙粳4569的选育及栽培技术要点[J]. 现代化农业, 2023 (7): 41-43. |
Wang G L, Hang Q Y, Liu N S, Ma W D, Song C Y, Lu W J, Zhou X S, Han X. Breeding and cultivation techniques of Longjing 4569[J]. Modernizing Agriculture, 2023(7): 41-43. (in Chinese with English abstract) | |
[87] | 乔金玲, 张景龙, 孙伟. 水稻稻瘟病抗病育种研究进展[J]. 北方水稻, 2016, 46(2): 49-53. |
Qiao J L, Zhang J L, Sun W. Research progress of rice blast resistance breeding[J]. North Rice, 2016, 46(2): 49-53. (in Chinese with English abstract) | |
[88] | 宋泽, 余显权, 黎小冰. 应用MAS技术改良水稻特异种质大粒溪香的稻瘟病抗性[J]. 种子, 2022, 41(6): 18-22. |
Song Z, Yu X Q, Li X B. Improving blast resistance of a distinctive fragrant rice germplasm named Dalixixiang based on MAS technique[J]. Seed, 2022, 41(6): 18-22. (in Chinese with English abstract) | |
[89] | 袁定阳, 谭炎宁, 余东, 孙学武, 孙志忠, 段美娟. 分子标记辅助改良培矮64S稻瘟病抗性[J]. 分子植物育种, 2012, 10(03): 278-284. |
Yuan D Y, Tan Y N, Yu D, Sun X W, Sun Z Z, Duan M J. Improving the blast resistance of Pei-ai-64S by marker-assisted selection[J]. Molecular Plant Breeding, 2012, 10(3): 278-284. (in Chinese with English abstract) | |
[90] | 曾晓强, 胡慧, 高若愚, 何丽萍, 田雨, 徐俊英, 杨隆维, 常玉晓, 徐建龙, 邱先进. 利用分子标记辅助选择改良‘长农粳1号’的稻瘟病抗性[J]. 分子植物育种, 2022, 20(13): 4400-4406. |
Zeng X Q, Hu H, Gao R Y, He L P, Tian Y, Xu J Y, Yang L W, Chang Y X, Xu J L, Qiu X J. Improvement of rice blast resistance of Changnonggeng 1 by marker-assisted selection[J]. Molecular Plant Breeding, 2022, 20(13): 4400-4406. (in Chinese with English abstract) | |
[91] | 吴云雨, 肖宁, 余玲, 蔡跃, 潘存红, 李育红, 张小祥, 黄年生, 季红娟, 戴正元, 李爱宏. 长江下游粳稻稻瘟病广谱抗性基因组合模式分析[J]. 中国农业科学, 2021, 54(9): 1881-1893. |
Wu Y Y, Xiao N, Yu L, Cai Y, Pan C H, Li Y H, Zhang X Y, Huang N S, Ji H J, Dai Z Y, Li A H. Construction and analysis of broad-spectrum resistance gene combination pattern for japonica rice in lower region of the Yangtze River, China[J]. Scientia Agricultura Sinica, 2021, 54(9): 1881-1893. (in Chinese with English abstract) | |
[92] | 陈萍萍, 游月华, 江巍, 戴展峰, 彭玉林, 黄水明. 利用分子辅助选择聚合抗稻瘟病基因选育黑糯稻新品系[J]. 农业科技通讯, 2021(10): 140-144. |
Chen P P, You Y H, Jiang W, Dai Z F, Peng Y L, Huang S M. A new black glutinous rice line was bred by molecular assisted selection polymerization of rice blast resistance gene[J]. Bulletin of Agricultural Science and Technology, 2021(10): 140-144. (in Chinese with English abstract) | |
[93] | 孙富, 唐梅, 何聪, 卢宏琮. 分子标记辅助聚合基因Pi1和Pi2改良红色特种籼稻稻瘟病抗性研究[J]. 湖北农业科学, 2018, 57(18): 23-27. |
Sun F, Tang M, He C, Lu H Z. Improvement of rice blast resistance in red rice by pyramiding of Pi1 and Pi2 through molecular marker-assisted selection[J]. Hubei Agricultural Sciences, 2018, 57(18): 23-27. (in Chinese with English abstract) | |
[94] | Hittalmani S, Parco A S, Mew T I, Zeigler R S, Huang N. Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice[J]. Theoretical and Applied Genetics, 2000, 100: 1121-1128. |
[95] | 何月秋, 唐文华, Leung H, Zeigler R S. CO39近等基因系抗稻瘟病性分析[J]. 作物学报, 2001, 27(6): 838-841. |
He Q Y, Tang W H, Leung H, Zeigler R S. Identification of CO39 near-isogenic lines for rice blast[J]. Acta Agronomica Sinica, 2001, 27(6): 838-841. (in Chinese with English abstract) | |
[96] | Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush G S, Datta S K. Field performance of transgenic elite commercial hybrid rice expressing bacillus thuringiensis delta-endotoxin[J]. Nature Biotechnology, 2000, 18(10): 1101-1104. |
[97] | 潘素君, 戴良英, 刘雄伦, 王国梁. 广谱抗稻瘟病基因Pi9对籼稻的转化研究[J]. 分子植物育种, 2006(5): 650-654. |
Pan S J, Dai L Y, Liu X L, Wang G L. Transformation of the broad-spectrum blast resistance gene Pi9 into indica rice[J]. Molecular Plant Breeding, 2006(5): 650-654. (in Chinese with English abstract) | |
[98] | 李海青, 李臻, 王莹莹, 柳絮, 王庆国, 姚方印, 刘炜. 转小萝卜γ-硫堇蛋白基因RsAFP1水稻的获得及其稻瘟病抗性初步鉴定[J]. 中国水稻科学, 2013, 27(4): 335-343. |
Li H Q, Li z, Wang Y Y, Liu X, Wang Q G, Yao F Y, Liu W. Transformation of ythion in identification of its blast resistance gene RsAFP1 into rice and preliminary[J]. Chinese Journal of Rice Science, 2013, 27(4): 335-343. (in Chinese with English abstract) | |
[99] | 易自力, 王紫萱, 覃静萍, 蒋建雄, 谭炎宁, 周清明. 转溶菌酶基因水稻回交转育籼型杂交稻亲本[J]. 中国水稻科学, 2006, 20(2): 147-152. |
Yi Z L, Wang Z X, Qin J P, Jiang J X, Tan Y N, Zhou Q M. Transfer of Lysozyme gene into indica parents of hybrid rice by backcrossing[J]. Chinese Journal of Rice Science, 2006, 20(2): 147-152. (in Chinese with English abstract) | |
[100] | 李刚, 高清松, 李伟, 张雯霞, 王健, 程保山, 王迪, 高浩, 徐卫军, 陈红旗, 纪剑辉. 定向敲除SD1基因提高水稻的抗倒性和稻瘟病抗性[J]. 中国水稻科学, 2023, 37(4): 359-367. |
Li G, Gao Q S, Li W, Zhang W X, Wang J, Cheng B S, Wang D, Xu W J, Chen H Q, Ji J H. The directed knockout of SD1 gene improves the lodging resistance and the blast resistance of rice cultivar Huai 119[J]. Chinese Journal of Rice Science, 2023, 37(4): 359-367. (in Chinese with English abstract) | |
[101] | 徐鹏, 王宏, 涂燃冉, 刘群恩, 吴玮勋, 傅秀民, 曹立勇, 沈希宏. 利用CRISPR/Cas9系统定向改良水稻稻瘟病抗性[J]. 中国水稻科学, 2019, 33(4): 313-322. |
Xu P, Wang H, Tu R R, Liu Q E, Wu W X, Fu X M, Cao L Y, Shen X H. Orientation improvement of blast resistance in rice via CRISPR/Cas9 system[J]. Chinese Journal of Rice Science, 2019, 33(4): 313-322. (in Chinese with English abstract) | |
[102] | Zhou Y, Xu S, Jiang N, Zhao X, Bai Z, Liu J, Yao W, Tang Q, Xiao G, Lü C, Wang K, Hu X, Tan J, Yang Y. Engineering of rice varieties with enhanced resistances to both blast and bacterial blight diseases via CRISPR/ Cas9[J]. Plant Biotechnology Journal, 2022, 20(5): 876. |
[103] | Tao H, Shi X, He F, Wang D, Xiao N, Fang H, Wang R, Zhang F, Wang M, Li A, Liu X, Wang GL, Ning Y. Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes[J]. Journal of Integrative Plant Biology, 2021, 63(9): 1639-1648. |
[104] | Xu Y, Bai L, Liu M, Liu Y, Peng S, Hu P, Wang D, Liu Q, Yan S, Gao L, Wang X, Ning Y, Zuo S, Zheng W, Liu S, Xiang W, Wang G L, Kang H. Identification of two novel rice S genes through combination of association and transcription analyses with gene-editing technology[J]. Plant Biotechnology Journal, 2023, 21(8): 1628-1641. |
[105] | Meuwissen T H, Hayes B J, Goddard M E. Prediction of total genetic value using genome-wide dense marker maps[J]. Genetics, 2001, 157(4): 1819-1829. |
[106] | 张桑里. 分子标记和全基因组背景选择改良广占63-4S的稻瘟病和白叶枯病抗性研究[D]. 武汉: 华中农业大学, 2018. |
Zhang S L. Improvement of rice blast and bacterial blight resistance of rice PTGMS line GZ63-4S by molecular marker selection and genome-wide background selection[D]. Wuhan: Huazhong Agricultural University, 2018. (in Chinese with English abstract) | |
[107] | 贺治洲, 辛业芸, 江南, 梁毅, 黄捷, 杨汉树, 王永卡, 李宙炜, 肖金华, 袁隆平, 彭俊华. 超优千号定向改良前后抗性、产量和主要农艺性状的对比评价[J]. 杂交水稻, 2020, 35(5): 94-99. |
He Z Z, Xin Y Y, Jiang N, Liang Y, Huang J, Yang H S, Wang Y K, Li Z W, Xiao J H, Yuan L P, Peng J H. The resistance, yield and yield before and after directional improvement of Chaoyou Qianhao comparative evaluation of main agronomic traits[J]. Hybrid Rice, 2020, 35(5): 94-99. (in Chinese with English abstract) | |
[108] | 邱树青, 陆青, 喻辉辉, 倪雪梅, 张耕耘, 何航, 谢为博, 周发松. 水稻全基因组选择育种技术平台构建与应用[J]. 生命科学, 2018, 30(10): 1120-1128. |
Qiu S Q, Lu Q, Yu H H, Ni X M, Zhang G Y, He H, Xie W B, Zhou F S. The development and application of rice whole genome selection breeding platform[J]. Chinese Bulletin of Life Sciences, 2018, 30(10): 1120-1128. (in Chinese with English abstract) | |
[109] | Yu S, Ali J, Zhou S, Ren G, Xie H, Xu J, Yu X, Zhou F, Peng S, Ma L, Yuan D, Li Z, Chen D, Zheng R, Zhao Z, Chu C, You A, Wei Y, Zhu S, Gu Q, He G, Li S, Liu G, Liu C, Zhang C, Xiao J, Luo L, Li Z, Zhang Q. From green super rice to green agriculture: Reaping the promise of functional genomics research[J]. Molecular Plant, 2022, 15(1): 9-26. |
[110] | Xiao N, Pan C, Li Y, Wu Y, Cai Y, Lu Y, Wang R, Yu L, Shi W, Kang H, Zhu Z, Huang N, Zhang X, Chen Z, Liu J, Yang Z, Ning Y, Li A. Genomic insight into balancing high yield, good quality, and blast resistance of japonica rice[J]. Genome Biology, 2021, 22(1): 283. |
[111] | Huang M, Balimponya E G, Mgonja E M, McHale L K, Luzi-Kihupi A, Wang G, Sneller C H. Use of genomic selection in breeding rice (Oryza sativa L.) for resistance to rice blast (Magnaporthe oryzae)[J]. Molecular Breeding, 2019, 39: 114. |
[1] | 杨好, 黄衍焱, 王剑, 易春霖, 石军, 谭楮湉, 任文芮, 王文明. 水稻中八个稻瘟病抗性基因特异分子标记的开发及应用[J]. 中国水稻科学, 2024, 38(5): 525-534. |
[2] | 许丹洁, 林巧霞, 李正康, 庄小倩, 凌宇, 赖美玲, 陈晓婷, 鲁国东. OsOPR10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2024, 38(4): 364-374. |
[3] | 童琪, 王春燕, 阙亚伟, 肖宇, 王政逸. 稻瘟病菌热激蛋白(HSP)40编码基因MoMHF6的鉴定及功能研究[J]. 中国水稻科学, 2023, 37(6): 563-576. |
[4] | 陈明亮, 熊文涛, 沈雨民, 熊焕金, 罗世友, 吴小燕, 胡兰香, 肖叶青. 广谱抗稻瘟病水稻保持系赣香B的抗性遗传解析[J]. 中国水稻科学, 2023, 37(5): 470-477. |
[5] | 李刚, 高清松, 李伟, 张雯霞, 王健, 程保山, 王迪, 高浩, 徐卫军, 陈红旗, 纪剑辉. 定向敲除SD1基因提高水稻的抗倒性和稻瘟病抗性[J]. 中国水稻科学, 2023, 37(4): 359-367. |
[6] | 王雨, 孙全翌, 杜海波, 许志文, 吴科霆, 尹力, 冯志明, 胡珂鸣, 陈宗祥, 左示敏. 利用抗稻瘟病基因Pigm和抗纹枯病数量性状基因qSB-9TQ、qSB-11HJX改良南粳9108的抗性[J]. 中国水稻科学, 2023, 37(2): 125-132. |
[7] | 周永林, 申小磊, 周立帅, 林巧霞, 王朝露, 陈静, 冯慧捷, 张振文, 陈晓婷, 鲁国东. OsLOX10正调控水稻对稻瘟病和白叶枯病的抗性[J]. 中国水稻科学, 2022, 36(4): 348-356. |
[8] | 曹煜东, 肖湘谊, 叶乃忠, 丁晓雯, 易晓璇, 刘金灵, 肖应辉. 生长素调控因子OsGRF4协同调控水稻粒形和稻瘟病抗性[J]. 中国水稻科学, 2021, 35(6): 629-638. |
[9] | 刘树芳, 董丽英, 李迅东, 周伍民, 杨勤忠. 持有Pi9基因的水稻单基因系IRBL9-W对稻瘟病菌苗期和成株期抗性差异[J]. 中国水稻科学, 2021, 35(3): 303-310. |
[10] | 朱华珺, 周瑚, 任佐华, 刘二明. 枯草芽孢杆菌JN005胞外抗菌物质及对水稻叶瘟防治效果[J]. 中国水稻科学, 2020, 34(5): 470-478. |
[11] | 许赵蒙, 李利华, 高晓庆, 袁正杰, 李莘, 田旭丹, 王岚岚, 瞿绍洪. 转Pi9抗稻瘟病基因水稻株系的比较转录组分析[J]. 中国水稻科学, 2020, 34(3): 245-255. |
[12] | 孟峰, 张亚玲, 靳学慧. 黑龙江省稻瘟病菌无毒基因AVR-Pita及其同源基因的检测与分析[J]. 中国水稻科学, 2020, 34(2): 143-149. |
[13] | 李金璐, 张慧, 焦泽宇, 刘剑宇, 韩光煜, 卓晓轩, 罗琼. 水稻子预44和江南香糯基因组比较鉴定稻瘟病抗性相关基因[J]. 中国水稻科学, 2020, 34(1): 8-16. |
[14] | 陈涛, 孙旭超, 张善磊, 梁文化, 周丽慧, 赵庆勇, 姚姝, 赵凌, 赵春芳, 朱镇, 张亚东, 王才林. 稻瘟病广谱抗性基因Pigm特异性分子标记的开发和应用[J]. 中国水稻科学, 2020, 34(1): 28-36. |
[15] | 曹妮, 陈渊, 季芝娟, 曾宇翔, 杨长登, 梁燕. 水稻抗稻瘟病分子机制研究进展[J]. 中国水稻科学, 2019, 33(6): 489-498. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||