Chinese Journal OF Rice Science ›› 2025, Vol. 39 ›› Issue (1): 115-127.DOI: 10.16819/j.1001-7216.2025.240309
• Research Papers • Previous Articles Next Articles
WANG Xiaoxi1,2,3, CAI Chuang1,2,3, SONG Lian1,2,3, ZHOU Wei1,2,3, YANG Xiong1,3, GU Xinyue1,2,3, ZHU Chunwu1,2,3,*()
Received:
2024-03-18
Revised:
2024-07-14
Online:
2025-01-10
Published:
2025-01-14
Contact:
ZHU Chunwu
王晓茜1,2,3, 蔡创1,2,3, 宋练1,2,3, 周伟1,2,3, 杨雄1,3, 顾歆悦1,2,3, 朱春梧1,2,3,*()
通讯作者:
朱春梧
基金资助:
WANG Xiaoxi, CAI Chuang, SONG Lian, ZHOU Wei, YANG Xiong, GU Xinyue, ZHU Chunwu. Effect of Free-air CO2 Enrichment and Temperature Increase on Grain Quality of Rice Cultivar Yangdao 6[J]. Chinese Journal OF Rice Science, 2025, 39(1): 115-127.
王晓茜, 蔡创, 宋练, 周伟, 杨雄, 顾歆悦, 朱春梧. 开放式大气CO2浓度升高和温度升高对扬稻6号稻米品质的影响[J]. 中国水稻科学, 2025, 39(1): 115-127.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2025.240309
年份 Year | 处理 Treatment | 糙米率 Brown rice percentage (%) | 精米率 Milled rice percentage (%) | 整精米率 Head rice percentage (%) | 垩白粒率 Chalky grain percentage (%) | 垩白度 Chalkiness degree (%) | 直链淀粉含量 Amylose content (%) | 蛋白质含量 Protein content (mg/g) |
---|---|---|---|---|---|---|---|---|
2021 | Control | 79.16±0.22 c | 63.83±0.24 b | 58.68±0.38 a | 20.59±1.49 a | 5.60±0.41 a | 27.37±3.09 a | 105.79±3.87 ab |
EC | 80.11±0.35 b | 64.85±0.61 ab | 57.01±0.25 ab | 16.01±0.88 ab | 4.28±0.28 ab | 25.77±1.51 a | 99.20±2.99 b | |
ENDT | 80.24±0.24 b | 65.28±0.32 a | 57.64±0.61 ab | 18.88±0.84 ab | 4.78±0.19 ab | 19.01±1.03 b | 111.23±2.41 a | |
ECNDT | 81.14±0.19 a | 65.86±0.21 a | 55.97±0.96 b | 15.24±2.49 b | 3.65±0.70 b | 18.73±0.42 b | 107.71±2.88 ab | |
2022 | Control | 80.28±0.24 a | 67.97±0.30 a | 59.72±1.16 a | 18.27±0.17 a | 4.26±0.22 a | 16.00±1.88 a | 100.24±2.84 a |
EC | 80.05±0.18 a | 67.76±0.18 a | 61.86±2.90 a | 16.77±1.93 a | 3.46±0.46 ab | 14.68±1.25 a | 85.53±7.03 a | |
EDT | 79.66±0.25 a | 67.03±0.48 a | 65.36±0.56 a | 13.94±0.91 a | 3.05±0.42 b | 17.24±2.04 a | 95.41±0.86 a | |
ECDT | 79.51±0.27 a | 67.43±0.24 a | 63.27±0.94 a | 14.58±1.03 a | 3.07±0.32 ab | 17.22±0.71 a | 83.74±3.12 a | |
双因素方差分析显著性 The probability of significance of two-way ANOVA | ||||||||
2021 | CO2 | 0.046 | 0.161 | 0.047 | 0.050 | 0.062 | 0.678 | 0.169 |
NDT | 0.043 | 0.165 | 0.407 | 0.048 | 0.009 | 0.037 | 0.249 | |
CO2 × NDT | 0.914 | 0.499 | 0.985 | 0.789 | 0.823 | 0.802 | 0.554 | |
2022 | CO2 | 0.434 | 0.647 | 0.988 | 0.833 | 0.592 | 0.620 | 0.133 |
DT | 0.224 | 0.293 | 0.241 | 0.052 | 0.050 | 0.035 | 0.398 | |
CO2 × DT | 0.860 | 0.476 | 0.336 | 0.357 | 0.344 | 0.792 | 0.676 | |
Control表示环境CO2浓度和温度,EC表示大气CO2浓度升高,ENDT表示夜间-白天温度升高,ECNDT表示大气CO2浓度升高和夜间-白天温度升高,EDT表示白天温度升高,ECDT表示大气CO2浓度升高和白天温度升高。NDT和DT分别表示夜间-白天温度和白天温度。每列不同小写字母表示各处理间的显著性差异(多重比较结果)。表中数据为平均数±标准误(n = 3)。显著性水平P < 0.05。 | ||||||||
Control stand for ambient CO2 concentration and temperature, EC stand for elevated atmospheric CO2 concentration, ENDT stand for elevated night-time and day-time temperature, ECNDT stand for the combination of elevated atmospheric CO2 concentration and elevated night-time and day-time temperature, EDT stand for elevated day-time temperature, ECDT stand for the combination of elevated atmospheric CO2 concentration and elevated day-time temperature. NDT and DT stand for night-time and day-time temperature and day-time temperature, respectively. Different lowercase letters in a column represent significant differences among treatments (multiple comparisons). Data in the table are mean(standard errors, n = 3). Statistically significant differences (P < 0.05) are shown in the table. |
Table 1. Effects of elevated atmospheric CO2 concentration and elevated temperature on rice brown rice percentage, milled rice percentage, head rice percentage, chalky grain percentage, chalkiness degree, amylose content and protein content
年份 Year | 处理 Treatment | 糙米率 Brown rice percentage (%) | 精米率 Milled rice percentage (%) | 整精米率 Head rice percentage (%) | 垩白粒率 Chalky grain percentage (%) | 垩白度 Chalkiness degree (%) | 直链淀粉含量 Amylose content (%) | 蛋白质含量 Protein content (mg/g) |
---|---|---|---|---|---|---|---|---|
2021 | Control | 79.16±0.22 c | 63.83±0.24 b | 58.68±0.38 a | 20.59±1.49 a | 5.60±0.41 a | 27.37±3.09 a | 105.79±3.87 ab |
EC | 80.11±0.35 b | 64.85±0.61 ab | 57.01±0.25 ab | 16.01±0.88 ab | 4.28±0.28 ab | 25.77±1.51 a | 99.20±2.99 b | |
ENDT | 80.24±0.24 b | 65.28±0.32 a | 57.64±0.61 ab | 18.88±0.84 ab | 4.78±0.19 ab | 19.01±1.03 b | 111.23±2.41 a | |
ECNDT | 81.14±0.19 a | 65.86±0.21 a | 55.97±0.96 b | 15.24±2.49 b | 3.65±0.70 b | 18.73±0.42 b | 107.71±2.88 ab | |
2022 | Control | 80.28±0.24 a | 67.97±0.30 a | 59.72±1.16 a | 18.27±0.17 a | 4.26±0.22 a | 16.00±1.88 a | 100.24±2.84 a |
EC | 80.05±0.18 a | 67.76±0.18 a | 61.86±2.90 a | 16.77±1.93 a | 3.46±0.46 ab | 14.68±1.25 a | 85.53±7.03 a | |
EDT | 79.66±0.25 a | 67.03±0.48 a | 65.36±0.56 a | 13.94±0.91 a | 3.05±0.42 b | 17.24±2.04 a | 95.41±0.86 a | |
ECDT | 79.51±0.27 a | 67.43±0.24 a | 63.27±0.94 a | 14.58±1.03 a | 3.07±0.32 ab | 17.22±0.71 a | 83.74±3.12 a | |
双因素方差分析显著性 The probability of significance of two-way ANOVA | ||||||||
2021 | CO2 | 0.046 | 0.161 | 0.047 | 0.050 | 0.062 | 0.678 | 0.169 |
NDT | 0.043 | 0.165 | 0.407 | 0.048 | 0.009 | 0.037 | 0.249 | |
CO2 × NDT | 0.914 | 0.499 | 0.985 | 0.789 | 0.823 | 0.802 | 0.554 | |
2022 | CO2 | 0.434 | 0.647 | 0.988 | 0.833 | 0.592 | 0.620 | 0.133 |
DT | 0.224 | 0.293 | 0.241 | 0.052 | 0.050 | 0.035 | 0.398 | |
CO2 × DT | 0.860 | 0.476 | 0.336 | 0.357 | 0.344 | 0.792 | 0.676 | |
Control表示环境CO2浓度和温度,EC表示大气CO2浓度升高,ENDT表示夜间-白天温度升高,ECNDT表示大气CO2浓度升高和夜间-白天温度升高,EDT表示白天温度升高,ECDT表示大气CO2浓度升高和白天温度升高。NDT和DT分别表示夜间-白天温度和白天温度。每列不同小写字母表示各处理间的显著性差异(多重比较结果)。表中数据为平均数±标准误(n = 3)。显著性水平P < 0.05。 | ||||||||
Control stand for ambient CO2 concentration and temperature, EC stand for elevated atmospheric CO2 concentration, ENDT stand for elevated night-time and day-time temperature, ECNDT stand for the combination of elevated atmospheric CO2 concentration and elevated night-time and day-time temperature, EDT stand for elevated day-time temperature, ECDT stand for the combination of elevated atmospheric CO2 concentration and elevated day-time temperature. NDT and DT stand for night-time and day-time temperature and day-time temperature, respectively. Different lowercase letters in a column represent significant differences among treatments (multiple comparisons). Data in the table are mean(standard errors, n = 3). Statistically significant differences (P < 0.05) are shown in the table. |
Fig. 1. Effects of elevated atmospheric CO2 concentration and elevated temperature on sucrose synthase(SuSy, A), starch synthase(SS, B), Cell wall invertase(CWI, C), granule-bound starch synthase(GBSS, D) and vacuolar invertase(VI, E) activities in rice grains taken on different days after flowering (DAF)
酶 Enzyme | 开花后天数 Days after flowering (DAF) | 2021 | 2022 | |||||
CO2 | NDT | CO2×NDT | CO2 | DT | CO2×DT | |||
蔗糖合成酶SuSy | 4 | 0.171 | 0.006 | 0.011 | 0.771 | 0.279 | 0.453 | |
8 | 0.013 | 0.336 | 0.008 | 0.739 | 0.742 | 0.201 | ||
12 | 0.0002 | 0.003 | 0.421 | 0.024 | 0.511 | 0.290 | ||
16 | 0.569 | 0.985 | 0.594 | |||||
可溶性淀粉合成酶SS | 4 | 0.0005 | 0.002 | 0.330 | 0.717 | 0.036 | 0.545 | |
8 | 0.055 | 0.259 | 0.016 | 0.307 | 0.652 | 0.527 | ||
12 | 0.006 | 0.0002 | 0.049 | 0.306 | 0.258 | 0.361 | ||
16 | 0.032 | 0.304 | 0.100 | |||||
细胞壁转化酶CWI | 4 | 0.054 | 0.005 | 0.011 | 0.523 | 0.530 | 0.504 | |
8 | 0.002 | 0.008 | 0.074 | 0.394 | 0.267 | 0.332 | ||
12 | 0.017 | 0.007 | 0.021 | 0.658 | 0.718 | 0.958 | ||
16 | 0.097 | 0.385 | 0.014 | |||||
结合态淀粉合成酶GBSS | 4 | 0.030 | 0.001 | 0.046 | 0.711 | 0.566 | 0.340 | |
8 | 0.493 | 0.064 | 0.0001 | 0.633 | 0.151 | 0.843 | ||
12 | 0.087 | 0.018 | 0.496 | 0.317 | 0.532 | 0.600 | ||
16 | 0.643 | 0.796 | 0.636 | |||||
液泡转化酶VI | 4 | 0.068 | 0.012 | 0.0003 | 0.120 | 0.365 | 0.076 | |
8 | 0.0003 | 0.001 | 0.004 | 0.034 | 0.365 | 0.003 | ||
12 | 0.399 | 0.004 | 0.321 | 0.233 | 0.487 | 0.290 | ||
16 | 0.161 | 0.505 | 0.537 |
Table 2. Analysis of variance of CO2 and temperature effects on SuSy, SS, CWI, GBSS and VI activities in grains at different days after flowering (DAF)
酶 Enzyme | 开花后天数 Days after flowering (DAF) | 2021 | 2022 | |||||
CO2 | NDT | CO2×NDT | CO2 | DT | CO2×DT | |||
蔗糖合成酶SuSy | 4 | 0.171 | 0.006 | 0.011 | 0.771 | 0.279 | 0.453 | |
8 | 0.013 | 0.336 | 0.008 | 0.739 | 0.742 | 0.201 | ||
12 | 0.0002 | 0.003 | 0.421 | 0.024 | 0.511 | 0.290 | ||
16 | 0.569 | 0.985 | 0.594 | |||||
可溶性淀粉合成酶SS | 4 | 0.0005 | 0.002 | 0.330 | 0.717 | 0.036 | 0.545 | |
8 | 0.055 | 0.259 | 0.016 | 0.307 | 0.652 | 0.527 | ||
12 | 0.006 | 0.0002 | 0.049 | 0.306 | 0.258 | 0.361 | ||
16 | 0.032 | 0.304 | 0.100 | |||||
细胞壁转化酶CWI | 4 | 0.054 | 0.005 | 0.011 | 0.523 | 0.530 | 0.504 | |
8 | 0.002 | 0.008 | 0.074 | 0.394 | 0.267 | 0.332 | ||
12 | 0.017 | 0.007 | 0.021 | 0.658 | 0.718 | 0.958 | ||
16 | 0.097 | 0.385 | 0.014 | |||||
结合态淀粉合成酶GBSS | 4 | 0.030 | 0.001 | 0.046 | 0.711 | 0.566 | 0.340 | |
8 | 0.493 | 0.064 | 0.0001 | 0.633 | 0.151 | 0.843 | ||
12 | 0.087 | 0.018 | 0.496 | 0.317 | 0.532 | 0.600 | ||
16 | 0.643 | 0.796 | 0.636 | |||||
液泡转化酶VI | 4 | 0.068 | 0.012 | 0.0003 | 0.120 | 0.365 | 0.076 | |
8 | 0.0003 | 0.001 | 0.004 | 0.034 | 0.365 | 0.003 | ||
12 | 0.399 | 0.004 | 0.321 | 0.233 | 0.487 | 0.290 | ||
16 | 0.161 | 0.505 | 0.537 |
Fig. 2. Effects of elevated atmospheric CO2 concentration and elevated temperature on non-structural carbohydrates (NSC) content in rice grains taken at maturity in 2021 (A) and 2022 (B)
Fig. 3. Relationships between chalky grain percentage and non-structural carbohydrates (NSC) content (A), SuSy (B), SS (C), CWI (D), GBSS (E), and VI (F) activities in rice grains Statistical parameters given in the panels are in bold if data are combined for all treatments. The line represents significant regressions (P < 0.05), and the shaded area represents 95% confidence interval.
Fig. 4. Relationships between chalkiness degree and non-structural carbohydrates (NSC) content (A),and SuSy (B), SS (C), CWI (D), GBSS (E), VI (F) activities in rice grains Statistical parameters given in the panels are in bold if data are combined for all treatments, in nonbold if not. The line represents significant regressions (P < 0.05), and the shaded area represents the 95% confidence interval.
[1] | NOAA. Carbon dioxide peaks near 420 parts per million at Mauna Loa observatory[EB/OL] 2021. https://research.noaa.gov/article/ArtMID/587/ArticleID/2764/ (accessed 19 October 2021). |
[2] | Retallack G J, Conde G D. Deep time perspective on rising atmospheric CO2[J]. Global and Planetary Change, 2020, 189: 103177. |
[3] | Masson-Delmotte V, Zhai P, Pirani A, Connors S L, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis M I, Huang M, Leitzell K, Lonnoy E, Matthews J B R, Maycock T K, Waterfield T, Yelekçi O, Yu R, Zhou B. Summary for policymakers: Climate change 2021:The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[M/OL]. Switzerland: IPCC, 2021. |
[4] | MacLean J, Hardy B, Hettel G. Rice Almanac, 4th edition[M]. Los Banos: International Rice Research Institute, 2013. |
[5] | Seck P A, Diagne A, Mohanty S, Wopereis M C S. Crops that feed the world 7: Rice[J]. Food Security, 2012, 4(1): 7-24. |
[6] | Khush G S. Strategies for increasing the yield potential of cereals: Case of rice as an example[J]. Plant Breeding, 2013, 132: 433-436. |
[7] | Zhang L L, Zhang Z, Tao F, Luo Y C, Zhang J, Cao J. Adapting to climate change precisely through cultivars renewal for rice production across China: When, where, and what cultivars will be required[J]? Agricultural and Forest Meteorology, 2022, 316: 108856. |
[8] | OECD/FAO. OECD-FAO Agricultural Outlook 2021-2030[M]. Paris: OECD Publishing, 2021. https://doi.org/10.1787/19428846-en. |
[9] | Normile D. Reinventing rice to feed the world[J]. Science, 2008, 321: 330-333. |
[10] | 国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2018. |
NBSC. Statistical Yearbook of China[M]. Beijing: China Statistics Press, 2018. (in Chinese) | |
[11] | Chaturvedi A K, Bahuguna R N, Shah D, Pal M, Jagadish K S V. High temperature stress during flowering and grain filling offsets beneficial impact of elevated CO2 on assimilate partitioning and sink-strength in rice[J]. Scientific Reports, 2017, 7(1): 8227. |
[12] | 王文婷. 沿江地区温光要素对优质粳稻产量与品质的影响研究[D]. 扬州: 扬州大学, 2021. |
Wang W T. Study on the effect of temperature-light factors on the formation of quality and yield of japonica rice along the Yangtze River[D]. Yangzhou: Yangzhou University, 2021. (in Chinese with English abstract) | |
[13] | 牛玺朝, 户少武, 杨阳, 童楷程, 景立权, 朱建国, 王余龙, 杨连新, 王云霞. 大气CO2浓度增高对不同水稻品种稻米品质的影响[J]. 中国生态农业学报, 2021, 29(3): 509-519. |
Niu X C, Hu S W, Yang Y, Tong K C, Jing L Q, Zhu J G, Wang Y L, Yang L X, Wang Y X. Effect of CO2concentration enrichment on the grain quality of different rice varieties[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 509-519. (in Chinese with English abstract) | |
[14] | 杨陶陶, 邹积祥, 伍龙梅, 包晓哲, 江瑜, 张楠, 张彬. 开放式增温对华南双季稻稻米品质的影响[J]. 中国水稻科学, 2022, 37(1): 66-77. |
Yang T T, Zou J X, Wu L M, Bao X Z, Jiang Y, Zhang N, Zhang B. Effect of free air temperature increase on grain quality of double-cropping rice in south China[J]. Chinese Journal of Rice Science, 2022, 37(1): 66-77. (in Chinese with English abstract) | |
[15] | Hu S W, Tong K C, Chen W, Wang Y X, Wang Y L, Yang L X. Response of rice grain quality to elevated atmospheric CO2 concentration: A meta-analysis of 20-year FACE studies[J]. Field Crops Research, 2022, 284: 108562. |
[16] | Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming[J]. Global Change Biology, 2016, 22(3): 1256-1270. |
[17] | 徐长亮, 李军营, 谢辉, 朱建国, 范桂枝, 蔡庆生. 开放式空气CO2浓度升高对稻米品质的影响[J]. 中国农学通报, 2008(9): 391-397. |
Xu C L, Li J Y, Xie H, Zhu J G, Fan G Z, Cai Q S. Effect of free air CO2enrichment to rice quality of rice[J]. Chinese Agricultural Science Bulletin, 2008(9): 391-397. (in Chinese with English abstract) | |
[18] | Fahad S, Hussain S, Saud S, Hassan S, Chauhan B S, Khan F, Ihsan M Z, Ullah A, Wu C, Bajwa A A, Alharby H, Amanullah, Nasim W, Shahzad B, Tanveer M, Huang J L. Responses of rapid viscoanalyzer profile and other rice grain qualities to exogenously applied plant growth regulators under high day and high night temperatures[J]. PLoS One, 2016, 11(7): e0159590. |
[19] | Chaturvedi A K, Bahuguna R N, Pal M, Shah D, Maurya S, Jagadish K S V. Elevated CO2 and heat stress interactions affect grain yield, quality and mineral nutrient composition in rice under field conditions[J]. Field Crops Research, 2017, 206: 149-157. |
[20] | Wei L L, Wang W L, Zhu J G, Wang Z Q, Wang J Q, Li C H. Responses of rice qualitative characteristics to elevated carbon dioxide and higher temperature: Implications for global nutrition[J]. Journal of the Science of Food and Agriculture, 2021, 101(9): 3854-3861. |
[21] | Zhu C W, Kobayashi K, Loladze I, Zhu J G, Jiang Q, Xu X, Liu G, Seneweera S, Ebi K L, Drewnowski A, Fukagawa N K, Ziska L H. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries[J]. Science Advances, 2018, 4(5): eaaq1012. |
[22] | 王云霞, 杨连新. 水稻品质对主要气候变化因子的响应[J]. 农业环境科学学报, 2020, 39(4): 822-833. |
Wang Y X, Yang L X. Response of rice quality to major climate change factors[J]. Journal of Agro-Environment Science, 2020, 39(4): 822-833. (in Chinese with English abstract) | |
[23] | Usui Y, Sakai H, Tokida T, Nakamura H, Nakagawa H, Hasegawa T. Heat-tolerant rice cultivars retain grain appearance quality under free-air CO2 enrichment[J]. Rice, 2014, 7(1): 6. |
[24] | Jagadish S V K, Murty M V R, Quick W P. Rice responses to rising temperatures: Challenges, perspectives and future directions[J]. Plant, Cell & Environment, 2015, 38(9): 1686-1698. |
[25] | Shi W J, Yin X Y, Struik P C, Solis C, Xie F M, Schmidt R C, Huang M, Zou Y B, Ye C R, Jagadish S V K. High day- and night-time temperatures affect grain growth dynamics in contrasting rice genotypes[J]. Journal of Experimental Botany, 2017, 68(18): 5233-5245. |
[26] | Long S P, Ainsworth E A, Leakey A D B, Nösberger J, Ort D R. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations[J]. Science, 2006, 312(5782): 1918-1921. |
[27] | Cai C, Yin X Y, He S Q, Jiang W Y, Si C F, Struik P C, Luo W H, Li G, Xie Y T, Xiong Y, Pan G X. Responses of wheat and rice to factorial combinations of ambient and elevated CO2 and temperature in FACE experiments[J]. Global Change Biology, 2016, 22(2): 856-874. |
[28] | Cai C, Li G, Di L J, Ding Y J, Fu L, Guo X H, Struik P C, Pan G X, Li H Z, Chen W P, Luo W H, Yin X Y. The acclimation of leaf photosynthesis of wheat and rice to seasonal temperature changes in T-FACE environments[J]. Global Change Biology, 2020, 26(2): 539-556. |
[29] | Bremner J M. Determination of nitrogen in soil by the Kjeldahl method[J]. The Journal of Agricultural Science, 1960, 55: 11-33. |
[30] | Juliano B O. Rice in human nutrition/Prepared in collaboration with FAO. Rome: Food and Agriculture Organization of the United Nations, 1993: 162. |
[31] | Jing L Q, Wang J, Shen S B, Wang Y X, Zhu J G, Wang Y L, Yang L X. The impact of elevated CO2 and temperature on grain quality of rice grown under open-air field conditions[J]. Journal of the Science of Food and Agriculture, 2016, 96(11): 3658-3667. |
[32] | 钟旭华, 李太贵. 不同结实温度下稻米直链淀粉含量与千粒重的相关性研究[J]. 中国水稻科学, 1994, (2): 126-128. |
Zhong X H, Li T G. The correlation between amylose content and grain weight under different ripening temperature[J]. Chinese Journal of Rice Science, 1994, (2): 126-128. (in Chinese with English abstract) | |
[33] | 张国发, 王绍华, 尤娟, 王强盛, 丁艳锋, 吉志军. 结实期不同时段高温对稻米品质的影响[J]. 作物学报, 2006, 32(2): 283-287. |
Zhang G F, Wang S H, You J, Wang Q S, Ding Y F, Ji Z J. Effect of higher temperature in different filling stages on rice qualities[J]. Acta Agronomica Sinica, 2006, 32(2): 283-287. (in Chinese with English abstract) | |
[34] | Resurrecion A P. Effect of temperature during ripening on grain quality of rice[J]. Soil Science and Plant Nutrition, 1977, 23(1): 109-112. |
[35] | Wang X X, Cai C, Song L, Zhou W, Yang X, Gu X Y. Responses of rice grain yield and quality to factorial combinations of ambient and elevated CO2 and temperature in T-FACE environments[J]. Field Crops Research, 2024, 309: 109328. |
[36] | Lo P C, Hu L, Kitano H, Matsuoka M. Starch metabolism and grain chalkiness under high temperature stress[J]. National Science Review, 2016, 3(03): 280-282. |
[37] | 王东明, 陶冶, 朱建国, 刘钢, 朱春梧. 稻米外观与加工品质对大气CO2浓度升高的响应[J]. 中国水稻科学, 2019, 33(4): 338-346. |
Wang D M, Tao Y, Zhu J G, Liu G, Zhu C W. Responses of rice appearance and processing quality to elevated atmospheric CO2concentration[J]. Chinese Journal of Rice Science, 2019, 33(4): 338-346. (in Chinese with English abstract) | |
[38] | 杨陶陶. 双季籼稻产量和稻米品质对增温的响应特征及其机理[D]. 南昌: 江西农业大学, 2020. |
Yang T T. Response of indica grain yield and grain quality to experiment warming in a double rice cropping system and its mechanism[D]. Nanchang: Jiangxi Agricultural University, 2020. (in Chinese) | |
[39] | 董文军, 田云录, 张彬, 陈金, 张卫建. 非对称性增温对水稻品种南粳44米质及关键酶活性的影响[J]. 作物学报, 2011, 37(5): 832-841. |
Dong W J, Tian Y L, Zhang B, Chen J, Zhang W J. Effect of asymmetric warming on grain quality and related key enzymes activities for japonica rice (Nanjing 44) under FATI facility[J]. Acta Agronomica Sinica, 2011, 37(5): 832-841. (in Chinese with English abstract) | |
[40] | Uddling J, Broberg M C, Feng Z Z, Pleijel H. Crop quality under rising atmospheric CO2[J]. Current Opinion in Plant Biology, 2018, 45: 262-267. |
[41] | Wang Y X, Frei M. Stressed food: The impact of abiotic environmental stresses on crop quality[J]. Agriculture, Ecosystems & Environment, 2011, 141(3/4): 271-286. |
[42] | 郑小龙, 周菁清, 白杨, 邵雅芳, 章林平, 胡培松, 魏祥进. 粳稻不同穗部籽粒的淀粉与垩白品质差异及分子机制[J]. 作物学报, 2022, 48(6): 1425-1436. |
Zheng X L, Zhou J Q, Bai Y, Shao Y F, Zhang L P, Hu P S, Wei X J. Difference and molecular mechanism of soluble sugar metabolism and quality of different rice panicle in japonica rice[J]. Acta Agronomica Sinica, 2022, 48(6): 1425-1436. (in Chinese with English abstract) | |
[43] | 李天, 刘奇华, 大杉立, 山岸徹, 佐佐木治人. 灌浆结实期高温对水稻籽粒蔗糖及降解酶活性的影响[J]. 中国水稻科学, 2006, (6): 626-630. |
Li T, Liu Q H, Ohsugi R, Yamagishi T, Sasaki H. Effect of high temperature on sucrose content and sucrose-cleaving enzymes activity in rice during grain filling stage[J]. Chinese Journal of Rice Science, 2006, (6): 626-630. (in Chinese with English abstract) | |
[44] | Xu X Y, Ren Y L, Wang C M, Zhang H, Wang F, Chen J, Liu X, Zheng T H, Cai M H, Zeng Z Q, Zhou L, Zhu S S, Tang W J, Wang J L, Guo X P, Jiang L, Chen S H, Wan J M. OsVIN2 encodes a vacuolar acid invertase that affects grain size by altering sugar metabolism in rice[J]. Plant Cell Reports, 2019, 38(10): 1273-1290. |
[45] | 王志琴, 叶玉秀, 杨建昌, 袁莉民, 王学明, 朱庆森. 水稻灌浆期籽粒中蔗糖合成酶活性的变化与调节[J]. 作物学报, 2004, 30(7): 634-643. |
Wang Z Q, Ye Y X, Yang J C, Yuan L M, Wang X M, Zhu Q S. Changes and regulations of sucrose synthase activity in rice grains during grain filling[J]. Acta Agronomica Sinica, 2004, 30(7): 634-643. (in Chinese with English abstract) | |
[46] | Fei L W, Yang S C, Ma A L Y, Lunzhu C L, Wang M, Wang G J, Guo S W. Grain chalkiness is reduced by coordinating the biosynthesis of protein and starch in fragrant rice (Oryza sativa L.) grain under nitrogen fertilization[J]. Field Crops Research, 2023, 302: 109098. |
[47] | 李天, 大杉立, 山岸徹, 佐佐木治人. 灌浆结实期弱光对水稻籽粒蔗糖及其降解酶活性的影响[J]. 作物学报, 2006, 32(6): 943-945. |
Li T, Ohsugi R, Yamagishi T, Sasaki H. Effects of weak light on rice sucrose content and sucrose degradation enzyme activities at grain-filling stage[J]. Acta Agronomica Sinica, 2006, 32(6): 943-945. (in Chinese with English abstract) | |
[48] | Jin S K, Xu L N, Leng Y J, Zhang M Q, Yang Q Q, Wang S L, Jia S W, Song T, Wang R A, Tao T, Liu Q Q, Cai X L, Gao J P. The OsNAC24-OsNAP protein complex activates OsGBSSI and OsSBEI expression to fine-tune starch biosynthesis in rice endosperm[J]. Plant Biotechnology Journal, 2023, 21(11): 2224-2240. |
[49] | Irshad A, Guo H J, Rehman S U, Wang X Q, Wang C J, Raza A, Zhou C Y, Li Y T, Liu L X. Soluble starch synthase enzymes in cereals: an updated review[J]. Agronomy, 2021, 11(10): 1983. |
[50] | Guo C C, Zhang L, Jiang P, Yang Z Y, Chen Z K, Xu F X, Guo X Y, Sun Y J, Ma J. Grain chalkiness is decreased by balancing the synthesis of protein and starch in hybrid indica rice grains under nitrogen fertilization[J]. Foods, 2024, 13(6): 855. |
[51] | Su J C. Starch synthesis and grain filling in rice[J]. Developments in Crop Science, 2000, 26: 107-124. |
[52] | Jing L Q, Chen C, Lu Q, Wang Y X, Zhu J G, Lai S K, Wang Y L, Yang L X. How do elevated atmosphere CO2 and temperature alter the physiochemical properties of starch granules and rice taste?[J]. Science of the Total Environment, 2021, 766: 142592. |
[53] | Bahuguna R N, Solis C A, Shi W J, Jagadish K S V. Post-flowering night respiration and altered sink activity account for high night temperature-induced grain yield and quality loss in rice (Oryza sativa L.)[J]. Physiologia Plantarum, 2017, 159(1): 59-73. |
[54] | Impa S M, Raju B, Hein N T, Sandhu J, Vara Prasad P V, Walia H, Jagadish S V K. High night temperature effects on wheat and rice: Current status and way forward[J]. Plant, Cell & Environment, 2021, 44(7): 2049-2065. |
[1] |
SHAO Yafang, ZHU Dawei, ZHENG Xin, MOU Renxiang, ZHANG Linping, CHEN Mingxue.
Development Status and Regional Differences of japonica Rice Quality in the Yangtze River Delta Region from 2002 to 2022 [J]. Chinese Journal OF Rice Science, 2025, 39(2): 264-276. |
[2] | XIAO Wuwei, ZHU Chenguang, WANG Fei, XIONG Dongliang, HUANG Jianliang, PENG Shaobing, CUI Kehui. Research Progress in Rice Quality of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2025, 39(1): 33-46. |
[3] | DU Yanxiu, SUN Wenyu, YUAN Zeke, ZHANG Qianqian, LI Fuhao, LI Junzhou, SUN Hongzheng. Mapping of qChalk8 Controlling Chalky Rice Rate in japonica Rice by Combining QTL-Seq with Molecular Markers [J]. Chinese Journal OF Rice Science, 2024, 38(6): 665-671. |
[4] | YI Xiaoxuan, LIU Weiqi, ZENG Gai, LUO Lihua, XIAO Yinghui. Effect of High Temperature Stress at Grain Filling Stage on Early indica Rice Quality Traits [J]. Chinese Journal OF Rice Science, 2024, 38(1): 72-80. |
[5] | WU Yuhong, LI Yanhua, WANG Lü, QIN Yuhang, LI Shanshan, HAO Xingshun, ZHANG Qinglu, CUI Yuezhen, XIAO Fei. Improvement of Yield and Quality of Rice by Combining Returning of Green Manure (Astragalus smicus L.) and Rice Straw with Reduced Application of Nitrogen Fertilizer in Southern Shaanxi Province [J]. Chinese Journal OF Rice Science, 2023, 37(6): 628-641. |
[6] | YANG Xiaolong, WANG Biao, WANG Benfu, ZHANG Zhisheng, ZHANG Zuolin, YANG Lantian, CHENG Jianping, LI Yang. Effects of Different Water Management on Yield and Rice Quality of Dry-seeded Rice [J]. Chinese Journal OF Rice Science, 2023, 37(3): 285-294. |
[7] | WEI Xiaodong, SONG Xuemei, ZHAO Ling, ZHAO Qingyong, CHEN Tao, LU Kai, ZHU Zhen, HUANG Shengdong, WANG Cailin, ZHANG Yadong. Effects of Silicon and Zinc Fertilizer and Their Application Ways on Yield and Grain Quality of Rice Variety Nanjing 46 [J]. Chinese Journal OF Rice Science, 2023, 37(3): 295-306. |
[8] | YANG Chen, ZHENG Chang, YUAN Shen, XU Le, PENG Shaobing. Effect of Fertilizer Management on the Yield and Quality of Different Rice Varieties in Ratoon Rice [J]. Chinese Journal OF Rice Science, 2022, 36(1): 65-76. |
[9] | Xiangan TANG, Jinshui XIE, Changxu XU, Jia LIU, Fusheng YUAN, Guangrong LIU, Zuzhang LI. Effects of Chinese Milk Vetch and Reduced Chemical Fertilizer Application on Quality and Nutrient Uptake of Early Rice in Red Soil Paddy Field [J]. Chinese Journal OF Rice Science, 2021, 35(5): 466-474. |
[10] | Yunxia WU, Changchun GUO, Yongjian SUN, Fangyan LIU, Zhiyuan YANG, Yuanyuan SUN, Mingtian MA, Jun MA. Relationship Between Canopy Microclimate at Grain Filling Stage and Rice Quality of Directly Seeded Rice Under Water and Nitrogen Interaction [J]. Chinese Journal OF Rice Science, 2021, 35(3): 269-278. |
[11] | Chunyan WEN, XIONGYunhua, Xiaoyun YAO, Chunlian CHEN, Biaolin HU, Yongping HUANG, Yanshou WU. Effect of Nitrogen Application on Yield, Rice Quality and ProcessingCharacteristics inRice Noodle-specific Varieties [J]. Chinese Journal OF Rice Science, 2020, 34(6): 574-585. |
[12] | Hao WANG, Xiangchen LIU, Qiang ZHANG, Guilong YU, Wendi ZHANG, Jian HUANG, An ZHU, Lijun LIU. Differences in Grain Yield and Quality in Main and Ratoon Rice in Southern Henan Province [J]. Chinese Journal OF Rice Science, 2020, 34(5): 425-434. |
[13] | Guohui HU, Shunqi SONG, Jing XIANG, Defeng ZHU, Huizhe CHEN, Yikai ZHANG, Yaliang WANG, Yicheng XU, Zihao YI, Junke WANG, Yuping ZHANG. Effect of Biodegradable Film Mulching on Growth and Quality of Mechanically Transplanted Rice (Oryza sativa L.) [J]. Chinese Journal OF Rice Science, 2020, 34(2): 159-170. |
[14] | Xiaolei WANG, Yang LIU, Xiaotang SUN, Linjuan OUYANG, Jinlong PAN, Xiaosong PENG, Xiaorong CHEN, Xiaopeng HE, Junru FU, Jianmin BIAN, Lifang HU, Jie XU, Haohua HE, Changlan ZHU. Identification and Stability Analysis of QTL for Grain Quality Traits Under Multiple Environments in Rice [J]. Chinese Journal OF Rice Science, 2020, 34(1): 17-27. |
[15] | Taotao YANG, Qixing HU, Shan HUANG, Yanhua ZENG, Xueming TAN, Yongjun ZENG, Xiaohua PAN, Qinghua SHI, Jun ZHANG. Response of Yield and Quality of Double-cropping High Quality Rice Cultivars Under Free-air Temperature Increasing [J]. Chinese Journal OF Rice Science, 2018, 32(6): 572-580. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||