Chinese Journal OF Rice Science ›› 2023, Vol. 37 ›› Issue (4): 415-426.DOI: 10.16819/j.1001-7216.2023.220901
• Research Papers • Previous Articles Next Articles
HUANG Jinwen1,2, LI Rikun1,2, CHEN Zhicheng3, ZHANG Bianhong1,2, LEI Han1,2, PAN Ruixin1,2, YANG Mingyu1,2, PAN Meiqing1,2, TANG Lina3()
Received:
2022-09-01
Revised:
2022-10-09
Online:
2023-07-10
Published:
2023-07-17
Contact:
*email: 704142780@qq.com
黄锦文1,2, 李日坤1,2, 陈志诚3, 张汴泓1,2, 雷涵1,2, 潘睿欣1,2, 杨铭榆1,2, 潘美清1,2, 唐莉娜3()
通讯作者:
*email: 704142780@qq.com
基金资助:
HUANG Jinwen, LI Rikun, CHEN Zhicheng, ZHANG Bianhong, LEI Han, PAN Ruixin, YANG Mingyu, PAN Meiqing, TANG Lina. Effects of Straw Returning Techniques on Soil Nutrients, Organic Carbon and Microbial Diversity in Tobacco-rice Rotation System[J]. Chinese Journal OF Rice Science, 2023, 37(4): 415-426.
黄锦文, 李日坤, 陈志诚, 张汴泓, 雷涵, 潘睿欣, 杨铭榆, 潘美清, 唐莉娜. 不同稻草还田技术对烟-稻轮作系统土壤养分、有机碳及微生物多样性的影响[J]. 中国水稻科学, 2023, 37(4): 415-426.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2023.220901
年份 Year | 处理 Treatment | 产量 Yield /(kg·hm−2) | 产值 Output value /(Yuan·hm−2) | 均价 Average price /(Yuan·kg−1) | 上中等烟比例 Ratio of superior-medium tobacco/% |
---|---|---|---|---|---|
2020 | T0 | 1828.51±32.35 c | 33318.60±968.35 c | 18.27±1.10 a | 82.93±1.99 b |
T1 | 1841.55±38.32 c | 35175.30±1224.20 c | 19.10±0.07 a | 83.72±1.63 b | |
T2 | 2291.11±119.23 a | 43335.90±991.05 a | 18.87±0.68 a | 85.47±0.93 a | |
T3 | 1997.55±17.25 b | 39183.45±766.40 b | 19.63±0.52 a | 87.11±3.21 a | |
2021 | T0 | 1940.55±37.81 d | 34148.55±598.60 d | 17.60±0.07 c | 78.66±2.50 c |
T1 | 2013.75±27.45 c | 37922.25±609.15 c | 18.83±0.11 b | 82.70±0.33 b | |
T2 | 2438.75±18.00 a | 46702.06±959.30 a | 19.15±0.16 ab | 87.10±0.65 a | |
T3 | 2124.61±53.41 b | 42710.85±744.60 b | 20.11±0.29 a | 88.84±0.82 a | |
F值 F value | 年份 Year (Y) | ** | ** | NS | NS |
处理 Treatment (T) | ** | ** | ** | ** | |
Y×T | NS | NS | NS | NS |
Table 1. Economic indexes of flue-cured tobacco in tobacco-rice rotation system.
年份 Year | 处理 Treatment | 产量 Yield /(kg·hm−2) | 产值 Output value /(Yuan·hm−2) | 均价 Average price /(Yuan·kg−1) | 上中等烟比例 Ratio of superior-medium tobacco/% |
---|---|---|---|---|---|
2020 | T0 | 1828.51±32.35 c | 33318.60±968.35 c | 18.27±1.10 a | 82.93±1.99 b |
T1 | 1841.55±38.32 c | 35175.30±1224.20 c | 19.10±0.07 a | 83.72±1.63 b | |
T2 | 2291.11±119.23 a | 43335.90±991.05 a | 18.87±0.68 a | 85.47±0.93 a | |
T3 | 1997.55±17.25 b | 39183.45±766.40 b | 19.63±0.52 a | 87.11±3.21 a | |
2021 | T0 | 1940.55±37.81 d | 34148.55±598.60 d | 17.60±0.07 c | 78.66±2.50 c |
T1 | 2013.75±27.45 c | 37922.25±609.15 c | 18.83±0.11 b | 82.70±0.33 b | |
T2 | 2438.75±18.00 a | 46702.06±959.30 a | 19.15±0.16 ab | 87.10±0.65 a | |
T3 | 2124.61±53.41 b | 42710.85±744.60 b | 20.11±0.29 a | 88.84±0.82 a | |
F值 F value | 年份 Year (Y) | ** | ** | NS | NS |
处理 Treatment (T) | ** | ** | ** | ** | |
Y×T | NS | NS | NS | NS |
年份 Year | 处理 Treatment | 有效穗数 Effective panicles /(×104·hm−2) | 穗粒数 No. of grains per panicle | 千粒重 1000-grain weight/g | 结实率 Seed setting rate/% | 理论产量 Theoretical Yield /(kg·hm−2) | 实际产量 Actual yield /(kg·hm−2) |
---|---|---|---|---|---|---|---|
2020 | T0 | 210.17±2.08 b | 214.53±3.21 b | 22.88±1.29 a | 81.83±1.10 a | 8441.65±113.15 d | 8542.65±333.95 d |
T1 | 208.50±2.65 b | 217.17±1.84 b | 23.82±0.79 a | 81.11±1.59 a | 9127.69±161.13 c | 8879.81±128.01 c | |
T2 | 221.83±1.26 a | 230.81±2.77 a | 22.75±0.46 a | 81.06±1.57 a | 9441.98±183.21 a | 9338.41±122.44 a | |
T3 | 220.50±2.92 a | 226.97±2.14 a | 22.81±0.28 a | 81.02±1.37 a | 9248.99±213.17 b | 9210.74±89.29 b | |
2021 | T0 | 207.84±2.36 c | 215.08±5.70 c | 22.91±0.57 a | 83.10±0.07 a | 8510.50±133.01 d | 8607.59±147.42 c |
T1 | 217.68±2.74 b | 226.62±3.20 b | 23.21±0.34 a | 81.00±0.06 a | 9274.21±161.71 c | 9115.67±250.01 b | |
T2 | 224.94±1.41 a | 231.08±1.96 a | 22.73±0.15 a | 82.10±0.10 a | 9699.91±203.11 a | 9597.45±108.01 a | |
T3 | 222.84±2.36 a | 229.12±3.17 a | 22.63±0.13 a | 81.91±0.06 a | 9468.31±173.26 b | 9502.85±62.07 a | |
F值 F value | Y | * | * | NS | NS | * | * |
T | ** | ** | NS | NS | ** | ** | |
Y×T | NS | NS | NS | NS | NS | NS |
Table 2. Grain yield and its components of rice in tobacco-rice rotation system.
年份 Year | 处理 Treatment | 有效穗数 Effective panicles /(×104·hm−2) | 穗粒数 No. of grains per panicle | 千粒重 1000-grain weight/g | 结实率 Seed setting rate/% | 理论产量 Theoretical Yield /(kg·hm−2) | 实际产量 Actual yield /(kg·hm−2) |
---|---|---|---|---|---|---|---|
2020 | T0 | 210.17±2.08 b | 214.53±3.21 b | 22.88±1.29 a | 81.83±1.10 a | 8441.65±113.15 d | 8542.65±333.95 d |
T1 | 208.50±2.65 b | 217.17±1.84 b | 23.82±0.79 a | 81.11±1.59 a | 9127.69±161.13 c | 8879.81±128.01 c | |
T2 | 221.83±1.26 a | 230.81±2.77 a | 22.75±0.46 a | 81.06±1.57 a | 9441.98±183.21 a | 9338.41±122.44 a | |
T3 | 220.50±2.92 a | 226.97±2.14 a | 22.81±0.28 a | 81.02±1.37 a | 9248.99±213.17 b | 9210.74±89.29 b | |
2021 | T0 | 207.84±2.36 c | 215.08±5.70 c | 22.91±0.57 a | 83.10±0.07 a | 8510.50±133.01 d | 8607.59±147.42 c |
T1 | 217.68±2.74 b | 226.62±3.20 b | 23.21±0.34 a | 81.00±0.06 a | 9274.21±161.71 c | 9115.67±250.01 b | |
T2 | 224.94±1.41 a | 231.08±1.96 a | 22.73±0.15 a | 82.10±0.10 a | 9699.91±203.11 a | 9597.45±108.01 a | |
T3 | 222.84±2.36 a | 229.12±3.17 a | 22.63±0.13 a | 81.91±0.06 a | 9468.31±173.26 b | 9502.85±62.07 a | |
F值 F value | Y | * | * | NS | NS | * | * |
T | ** | ** | NS | NS | ** | ** | |
Y×T | NS | NS | NS | NS | NS | NS |
处理 Treatment | 碱解氮 Alkali-hydrolyzed nitrogen /(mg·kg−1) | 有效磷 Available phosphorus /(mg·kg−1) | 速效钾 Available potassium /(mg·kg−1) | 土壤有机碳 Soil organic carbon /(g·kg−1) | 可溶性有机碳 Dissolved organic carbon /(mg·kg−1) | DOC有效率 DOC-SOC ratio /% |
---|---|---|---|---|---|---|
T0 | 89.33±8.50 c | 49.77±0.92 c | 191.20±5.42 b | 16.61±1.24 c | 67.43±3.65 c | 0.41±0.03 a |
T1 | 93.00±4.08 b | 51.60±0.68 b | 194.00±12.54 a | 17.38±0.48 b | 69.67±1.95 b | 0.40±0.02 b |
T2 | 95.66±10.37 a | 52.74±0.71 a | 196.96±7.64 a | 18.49±0.21 a | 71.12±2.10 a | 0.38±0.01 c |
T3 | 95.33±8.37 a | 51.67±1.62 b | 196.89±10.46 a | 18.35±0.20 a | 69.55±3.30 b | 0.38±0.01 c |
Table 3. Changes of soil nutrient, SOC, DOC content and its effective rates in the topsoil(2021).
处理 Treatment | 碱解氮 Alkali-hydrolyzed nitrogen /(mg·kg−1) | 有效磷 Available phosphorus /(mg·kg−1) | 速效钾 Available potassium /(mg·kg−1) | 土壤有机碳 Soil organic carbon /(g·kg−1) | 可溶性有机碳 Dissolved organic carbon /(mg·kg−1) | DOC有效率 DOC-SOC ratio /% |
---|---|---|---|---|---|---|
T0 | 89.33±8.50 c | 49.77±0.92 c | 191.20±5.42 b | 16.61±1.24 c | 67.43±3.65 c | 0.41±0.03 a |
T1 | 93.00±4.08 b | 51.60±0.68 b | 194.00±12.54 a | 17.38±0.48 b | 69.67±1.95 b | 0.40±0.02 b |
T2 | 95.66±10.37 a | 52.74±0.71 a | 196.96±7.64 a | 18.49±0.21 a | 71.12±2.10 a | 0.38±0.01 c |
T3 | 95.33±8.37 a | 51.67±1.62 b | 196.89±10.46 a | 18.35±0.20 a | 69.55±3.30 b | 0.38±0.01 c |
Fig. 1. Microbial dilution curves of tobacco rhizosphere soil microorganisms during tobacco boom period. A and B represent bacterial and fungal dilution curves, respectively.
微生物 Microorganism | 处理 Treatment | 丰富度指数 Chao1 | 测序深度指数 Coverage/% | 多样性指数 Observed species | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|---|
细菌 Bacteria | T0 | 3173.82 b | 96.97 a | 2413.07 c | 9.26 b | 0.99 a |
T1 | 3285.73 a | 96.95 a | 2502.87 b | 9.37 b | 0.99 a | |
T2 | 3312.47 a | 95.87 a | 2598.57 a | 9.58 a | 1.00 a | |
T3 | 3127.81 b | 95.66 a | 2330.93 d | 9.13 c | 0.99 a | |
真菌 Fungi | T0 | 747.19 a | 96.92 a | 513.99 a | 3.94 bc | 0.79 c |
T1 | 642.35 a | 96.91 a | 458.31 a | 4.66 a | 0.89 a | |
T2 | 726.45 a | 96.77 a | 505.97 a | 4.32 ab | 0.84 b | |
T3 | 642.91 a | 95.96 a | 439.67 a | 3.78 c | 0.79 c |
Table 4. Diversity index of bacterial and fungi community in rhizosphere soil during tobacco booming period.
微生物 Microorganism | 处理 Treatment | 丰富度指数 Chao1 | 测序深度指数 Coverage/% | 多样性指数 Observed species | 香农指数 Shannon index | 辛普森指数 Simpson index |
---|---|---|---|---|---|---|
细菌 Bacteria | T0 | 3173.82 b | 96.97 a | 2413.07 c | 9.26 b | 0.99 a |
T1 | 3285.73 a | 96.95 a | 2502.87 b | 9.37 b | 0.99 a | |
T2 | 3312.47 a | 95.87 a | 2598.57 a | 9.58 a | 1.00 a | |
T3 | 3127.81 b | 95.66 a | 2330.93 d | 9.13 c | 0.99 a | |
真菌 Fungi | T0 | 747.19 a | 96.92 a | 513.99 a | 3.94 bc | 0.79 c |
T1 | 642.35 a | 96.91 a | 458.31 a | 4.66 a | 0.89 a | |
T2 | 726.45 a | 96.77 a | 505.97 a | 4.32 ab | 0.84 b | |
T3 | 642.91 a | 95.96 a | 439.67 a | 3.78 c | 0.79 c |
微生物 Microorganism | 编号 No. | 相对丰度Relative abundance | 属名 Genus name | 功能 Function | |||
---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | ||||
细菌 Bacteria | OTU_1051 | 6.29±1.09 b | 6.77±0.70 ab | 4.50±0.25 c | 7.99±0.73 a | Rhodanobacter | 反硝化作用[ |
OTU_2436 | 2.49±0.75 b | 2.50±0.50 b | 3.71±0.35 a | 3.22±0.43 a | HSB_OF53-F07 | 碳源代谢[ | |
OTU_253 | 2.53±0.42 a | 2.98±0.43 a | 1.67±0.35 b | 2.99±0.50 a | Burkholderia | 固氮、解磷[ | |
OTU_2046 | 1.77±0.11 c | 1.58±0.20 d | 1.99±0.15 b | 2.72±0.17 a | Arthrobacter | 降解自毒物质 [ | |
OTU_258 | 1.98±0.44 ab | 1.64±0.31 b | 1.41±0.08 b | 2.45±0.19 a | Acidibacter | 未知 | |
OTU_2944 | 1.68±0.28 a | 1.71±0.39 a | 1.53±0.12 a | 1.79±0.15 a | Bradyrhizobium | 固氮[ | |
OTU_3260 | 1.46±0.21 a | 1.52±0.23 a | 1.63±0.21 a | 1.83±0.31 a | Sphingomonas | 分解复杂有机物[ | |
OTU_3317 | 1.04±0.11 b | 1.32±0.26 a | 1.30±0.12 a | 1.44±0.37 a | Candidatus_Solibacter | 分解有机质[ | |
真菌 Fungi | OTU_1056 | 47.75±0.33 a | 24.62±3.32 c | 22.00±4.79 c | 41.90±2.71 b | Humicola | 引起腐烂、疾病[ |
OTU_3 | 8.49±1.90 c | 20.64±3.33 b | 33.07±5.50 a | 22.94±1.13 b | Pseudeurotium | 纤维素分解[ | |
OTU_565 | 9.68±0.22 a | 12.50±4.52 a | 3.99±0.63 b | 5.64±0.85 b | Botryotrichum | 未知 | |
OTU_572 | 3.88±0.09 a | 3.21±1.34 ab | 4.02±0.51 a | 2.03±0.17 b | Mortierella | 未知 | |
OTU_1066 | 3.89±0.18 a | 2.36±0.21 b | 1.34±0.30 c | 2.27±0.39 b | Penicillium | 病害相关[ | |
OTU_918 | 1.11±0.24 b | 2.44±0.52 a | 2.17±0.19 a | 1.26±0.12 b | Fusarium | 纤维素分解[ |
Table 5. Function analysis of dominant bacteria and fungi in the rhizosphere soil (at genus level).
微生物 Microorganism | 编号 No. | 相对丰度Relative abundance | 属名 Genus name | 功能 Function | |||
---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | ||||
细菌 Bacteria | OTU_1051 | 6.29±1.09 b | 6.77±0.70 ab | 4.50±0.25 c | 7.99±0.73 a | Rhodanobacter | 反硝化作用[ |
OTU_2436 | 2.49±0.75 b | 2.50±0.50 b | 3.71±0.35 a | 3.22±0.43 a | HSB_OF53-F07 | 碳源代谢[ | |
OTU_253 | 2.53±0.42 a | 2.98±0.43 a | 1.67±0.35 b | 2.99±0.50 a | Burkholderia | 固氮、解磷[ | |
OTU_2046 | 1.77±0.11 c | 1.58±0.20 d | 1.99±0.15 b | 2.72±0.17 a | Arthrobacter | 降解自毒物质 [ | |
OTU_258 | 1.98±0.44 ab | 1.64±0.31 b | 1.41±0.08 b | 2.45±0.19 a | Acidibacter | 未知 | |
OTU_2944 | 1.68±0.28 a | 1.71±0.39 a | 1.53±0.12 a | 1.79±0.15 a | Bradyrhizobium | 固氮[ | |
OTU_3260 | 1.46±0.21 a | 1.52±0.23 a | 1.63±0.21 a | 1.83±0.31 a | Sphingomonas | 分解复杂有机物[ | |
OTU_3317 | 1.04±0.11 b | 1.32±0.26 a | 1.30±0.12 a | 1.44±0.37 a | Candidatus_Solibacter | 分解有机质[ | |
真菌 Fungi | OTU_1056 | 47.75±0.33 a | 24.62±3.32 c | 22.00±4.79 c | 41.90±2.71 b | Humicola | 引起腐烂、疾病[ |
OTU_3 | 8.49±1.90 c | 20.64±3.33 b | 33.07±5.50 a | 22.94±1.13 b | Pseudeurotium | 纤维素分解[ | |
OTU_565 | 9.68±0.22 a | 12.50±4.52 a | 3.99±0.63 b | 5.64±0.85 b | Botryotrichum | 未知 | |
OTU_572 | 3.88±0.09 a | 3.21±1.34 ab | 4.02±0.51 a | 2.03±0.17 b | Mortierella | 未知 | |
OTU_1066 | 3.89±0.18 a | 2.36±0.21 b | 1.34±0.30 c | 2.27±0.39 b | Penicillium | 病害相关[ | |
OTU_918 | 1.11±0.24 b | 2.44±0.52 a | 2.17±0.19 a | 1.26±0.12 b | Fusarium | 纤维素分解[ |
微生物 Microbe | 属名 Genus name | 碱解氮 Alkali-hydrolyzed nitrogen | 有效磷 Available phosphorus | 速效钾 Available potassium | 有机碳 Soil organic carbon | 可溶性有机碳Dissolved organic carbon |
---|---|---|---|---|---|---|
细菌 | Rhodanobacter | 0.081 | −0.233 | 0.248 | −0.017 | 0.116 |
Bacteria | HSB-OF53-F07 | 0.540 | 0.790** | 0.466 | 0.531 | −0.328 |
Burkholderia | −0.135 | −0.228 | 0.093 | −0.072 | 0.3010 | |
Arthrobacter | 0.856** | 0.493 | 0.718** | 0.458 | −0.216 | |
Acidibacter | 0.296 | −0.015 | 0.252 | 0.012 | −0.090 | |
Bradyrhizobium | −0.098 | −0.158 | 0.127 | 0.016 | 0.244 | |
Sphingomonas | 0.346 | 0.533 | 0.357 | 0.153 | −0.302 | |
Canidatus-solibacter | −0.604* | −0.133 | −0.403 | −0.280 | 0.014 | |
真菌 | Humicola | −0.078 | −0.394 | −0.092 | −0.455 | 0.040 |
Fungi | Pseudeurotium | 0.658* | 0.700* | 0.479 | 0.774** | −0.257 |
Botryotrichum | −0.702* | −0.545 | −0.501 | −0.529 | 0.188 | |
Mortierella | −0.293 | −0.278 | −0.544 | −0.069 | 0.069 | |
Penicillium | −0.477 | −0.664* | −0.431 | −0.678* | 0.329 | |
Fusarium | 0.835** | 0.825** | 0.823** | 0.699* | −0.070 |
Table 6. Correlation of rhizosphere dominant microorganisms (genus level) with soil nutrients and organic carbon in topsoil.
微生物 Microbe | 属名 Genus name | 碱解氮 Alkali-hydrolyzed nitrogen | 有效磷 Available phosphorus | 速效钾 Available potassium | 有机碳 Soil organic carbon | 可溶性有机碳Dissolved organic carbon |
---|---|---|---|---|---|---|
细菌 | Rhodanobacter | 0.081 | −0.233 | 0.248 | −0.017 | 0.116 |
Bacteria | HSB-OF53-F07 | 0.540 | 0.790** | 0.466 | 0.531 | −0.328 |
Burkholderia | −0.135 | −0.228 | 0.093 | −0.072 | 0.3010 | |
Arthrobacter | 0.856** | 0.493 | 0.718** | 0.458 | −0.216 | |
Acidibacter | 0.296 | −0.015 | 0.252 | 0.012 | −0.090 | |
Bradyrhizobium | −0.098 | −0.158 | 0.127 | 0.016 | 0.244 | |
Sphingomonas | 0.346 | 0.533 | 0.357 | 0.153 | −0.302 | |
Canidatus-solibacter | −0.604* | −0.133 | −0.403 | −0.280 | 0.014 | |
真菌 | Humicola | −0.078 | −0.394 | −0.092 | −0.455 | 0.040 |
Fungi | Pseudeurotium | 0.658* | 0.700* | 0.479 | 0.774** | −0.257 |
Botryotrichum | −0.702* | −0.545 | −0.501 | −0.529 | 0.188 | |
Mortierella | −0.293 | −0.278 | −0.544 | −0.069 | 0.069 | |
Penicillium | −0.477 | −0.664* | −0.431 | −0.678* | 0.329 | |
Fusarium | 0.835** | 0.825** | 0.823** | 0.699* | −0.070 |
[1] | 熊云明, 黄国勤, 王淑彬, 刘隆旺. 稻田轮作对土壤理化性状和作物产量的影响[J]. 中国农业科技导报, 2004(4): 42-45. |
Xiong Y M, Huang G Q, Wang S B, Liu L W. Effect of crop rotation in paddy field on soil physical and chemical characteristics and crop yield[J]. Review of China Agriculture Science and Technology, 2004(4): 42-45. (in Chinese with English abstract) | |
[2] | 向鹏华, 单雪华, 黄银章, 郭维, 龙世平. 烟-稻复种连作年限对土壤理化性状及烟叶产量与品质的影响[J]. 中国土壤与肥料, 2016(5): 105-109. |
Xiang P H, Shan X H, Huang Y Z, Guo W, Long S P. Effects of tobacco-rice continuous cropping years on soil physicochemical properties and tobacco yield and quality[J]. Soil and Fertilizer Sciences in China, 2016 (5): 105-109. (in Chinese with English abstract) | |
[3] | 周文新, 陈冬林, 卜毓坚, 屠乃美. 稻草还田对土壤微生物群落功能多样性的影响[J]. 环境科学学报, 2008(2): 326-330. |
Zhou W X, Chen D L, Bu Y J, Tu N M. Effects of rice-straw returning to the field on the metabolic diversity of soil microbial communities[J]. Acta Scientiae Circumstantiae, 2008(2): 326-330. (in Chinese with English abstract) | |
[4] | Yan S Y, Song J M, Fan J S, Yan C, Dong S K, Ma C M, Gong Z P. Changes in soil organic carbon fractions and microbial community under rice straw return in Northeast China[J]. Global Ecology and Conservation, 2020, 22, e00962: 1-12. |
[5] | 倪国荣, 涂国全, 魏赛金, 吴建富, 潘晓华. 稻草还田配施催腐菌剂对晚稻根际土壤微生物与酶活性及产量的影响[J]. 农业环境科学学报, 2012, 31(1): 149-154. |
Ni G R, Tu G Q, Wei S J, Wu J F, Shi Q H. Effects of straw-returning using agent on microbe and enzyme activity in rhizosphere soils and yield of late rice[J]. Journal of Agro-Environment Science, 2012, 31(1): 149-154. (in Chinese with English abstract) | |
[6] | 黄平娜, 秦道珠, 龙怀玉, 张认连, 雷秋良, 杨全柳. 稻草还田对烟田速效养分变化及烟叶产量品质的影响[J]. 中国农学通报, 2008, 24(12): 294-297. |
Huang P N, Qin D Z, Long H Y, Zhang R L, Lei Q L, Yang Q L. Straw also available nutrient-changes in the tobacco fields and tobacco yield and quality[J]. Chinese Agricultural Science Bulletin, 2008, 24(12): 294-297. (in Chinese with English abstract) | |
[7] | 陆文龙, 赵标, 五毛毛. 施用不同方式处理的秸秆对土壤磷形态分布的影响[J]. 江苏农业科学, 2018, 46(2): 232-234. |
Lu W L, Zhao B, Wu M M. Effects of different treatments of straw on soil phosphorus speciation distribution[J]. Jiangsu Agricultural Sciences, 2018, 46(2): 232-234. (in Chinese with English abstract) | |
[8] | 易镇邪, 符呈祥, 褚百凤, 付红, 陈冬林, 周文新, 屠乃美. 快腐剂处理还田早稻秸秆对晚季土壤化学与生物学特性的影响[J]. 中国农学通报, 2012, 28(27): 94-98. |
Yi Z X, Fu C X, Chu B F, Fu H, Chen D L, Zhou W X, Tu N M. Effect of treating returned early rice straw by decomposition accelerant on soil chemical and biological characteristics in late season[J]. Chinese Agricultural Science Bulletin, 2012, 28(27): 94-98. (in Chinese with English abstract) | |
[9] | 吴海勇, 李明德, 刘琼峰, 吴小丹. 稻草不同途径还田对土壤结构及有机质特征的影响[J]. 土壤通报, 2012, 43(4):836-841. |
Wu H Y, Li M D, Liu Q F, Wu X D. Effects of different modes of straw returning on soil structure and character of soil organic matter[J]. Chinese Journal of Soil Science, 2012, 43(4): 836-841. (in Chinese with English abstract) | |
[10] | 李明德, 肖汉乾, 汤海涛, 张一扬, 汤睿, 靳志丽, 张淑贞, 张四伟. 稻草还田对烟田土壤性状和烟草产量及品质的影响[J]. 中国土壤与肥料, 2006(6): 41-44. |
Li M D, Xiao H Q, Tang H T, Zhang Y Y, Tang R, Jin Z L, Zhang S Z, Zhang S W. Effect of incorporation straw into field on soil properties and tobacco yield and quality[J]. Soil and Fertilizer Sciences in China, 2006(6): 41-44. (in Chinese with English abstract) | |
[11] | Zhao S C, He P, Qiu S J, Jia L L, Liu M C, Jin J Y, Johnston A M. Long-term effects of potassium fertilization and straw return on soil potassium levels and crop yields in north-central China[J]. Field Crops Research, 2014, 169: 116-122. |
[12] | 廖萍, 刘磊, 何宇轩, 唐刚, 张俊, 曾勇军, 吴自明, 黄山. 施石灰和秸秆还田对双季稻产量和氮素吸收的互作效应[J]. 作物学报, 2020, 46(1): 84-92. |
Liao P, Liu L, He Y X, Tang G, Zhang J, Zeng Y J, Wu Z M, Huang S. Interactive effects of liming and straw incorporation on yield and nitrogen uptake in a double rice cropping system[J]. Acta Agronomica Sinica, 2020, 46(1): 84-92. (in Chinese with English abstract) | |
[13] | 王雪仁, 张瀛, 张珊珊, 林建麒. 不同方式稻草还田对烤烟产质量的影响[J]. 安徽农业科学, 2017, 45(27): 41-44. |
Wang X R, Zhang Y, Zhang S S, Lin J L. Effects of different ways of straw returning to soil on yield and quality of flue-cured tobacco[J]. Journal of Anhui Agricultural Sciences, 2017, 45(27): 41-44. (in Chinese with English abstract) | |
[14] | 黄平娜, 秦道珠, 龙怀玉, 刘淑军, 黄晶. 连续3年稻草还田对烤烟产量品质及后茬晚稻产量影响[J]. 中国农学通报, 2010, 26(11): 194-199. |
Huang P N, Qin D Z, Long H Y, Liu S J, Huang J. Effects of rice straw for three consecutive years to the yields and qualities of flue-cured tobacco and stalk return field late rice[J]. Chinese Agricultural Science Bulletin, 2010, 26(11): 194-199. (in Chinese with English abstract) | |
[15] | 刘王锁, 李海泉, 何毅, 黄业芸, 邱开阳, 谢应忠. 根际微生物对植物与土壤交互调控的研究进展[J]. 中国土壤与肥料, 2021(5): 318-327. |
Liu W S, Li H Q, He Y, Huang Y Y, Qiu K Y, Xie Y Z. Research progress on the interaction regulation of plant and soil by rhizosphere microbiome[J]. Soil and Fertilizer Sciences in China, 2021(5): 318-327. (in Chinese with English abstract) | |
[16] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2010. |
Bao S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2010. (in Chinese) | |
[17] | 占新华, 周立祥. 土壤溶液和水体中水溶性有机碳的比色测定[J]. 中国环境科学, 2002(5):433-437. |
Zhan X H, Zhou L X. Colorimetric determination of dissolved organic carbon in soil solution and water environment[J]. China Environmental Science, 2002(5):433-437. (in Chinese with English abstract) | |
[18] | 周吉祥, 张贺, 杨静, 李桂花, 张建峰. 连续施用土壤改良剂对沙质潮土肥力及活性有机碳组分的影响[J]. 中国农业科学, 2020, 53(16): 3307-3318. |
Zhou J X, Zhang H, Yang J, Li G H, Zhang J F. Effects of continuous application of soil amendments on fluvo-aquic soil fertility and active organic carbon components[J]. Scientia Agricultura Sinica, 2020, 53(16): 3307-3318. (in Chinese with English abstract) | |
[19] | Li H, Yang S, Semenov M V, Yao F, Ye J, Bu R C, Ma R A, Lin J J, Kurganova I, Wang X G, Deng Y, Kravchenko I, Jiang Y, Kuzyakov Y. Temperature sensitivity of SOM decomposition is linked with a K-selected microbial community[J]. Global Change Biology, 2021, 27(12): 1-17. doi: 10.1111/gcb.15593. |
[20] | Wang Y, Sheng H F, He Y, Wu J Y, Jiang Y X, Tam N F, Zhou H W. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of illumina tags[J]. Applied and Environmental Microbiology, 2012, 78(23): 8264-8271. |
[21] | Yang S D, Xiao J, Liang T, He W Z, Tan H W. Response of soil biological properties and bacterial diversity to different levels of nitrogen application in sugarcane fields[J]. AMB Express, 2021, 11(1): 172 |
[22] | 李敏, 王桂莲, 马璐, 张琇. 节杆菌降解阿魏酸的效能[J]. 微生物学通报, 2021, 48(5): 1550-1559. |
Li M, Wang G L, Ma L, Zhang X. Degradation of ferulic acid by Arthrobacter sp.[J]. Microbiology China, 2021, 48(5): 1550-1559. (in Chinese with English abstract) | |
[23] | 黎妍妍, 冯吉, 王林, 付裕,、 李锡宏. 万寿菊-烟草轮作调理植烟土壤细菌群落结构的作用[J]. 中国烟草科学, 2021, 42(1): 14-19. |
Li Y Y, Feng J, Wang L, Fu Y, Li X H. Effects of marigold-tobacco rotation on bacterial community in tobacco rhizosphere soil[J]. Chinese Tobacco Science, 2021, 42(1): 14-19. (in Chinese with English abstract) | |
[24] | 杨金燕, 姜于兰, 杨亚曦, 曾琛, 王肸芃. 腐质霉属真菌分类的研究进展[J]. 贵州农业科学, 2015, 43(8): 126-130. |
Yang J Y, Jiang Y L, Yang Y X, Zeng C, Wang X P. Advances in taxonomy of Humicola genera[J]. Guizhou Agricultural Sciences, 2015, 43(8): 126-130. (in Chinese with English abstract) | |
[25] | 戴蓬博, 张荣, 孙广宇. 中国苹果病害病原菌物名录[J]. 菌物学报, 2021, 40(4): 936-964. |
Dai P B, Zhang R, Sun G Y. A checklist of pathogenic fungi on apple in China[J]. Mycosystema, 40(4): 936-964. (in Chinese with English abstract) | |
[26] | Doveri F, Sarrocco S, Vannacci G. Studies on three rare coprophilous plectomycetes from Italy[J]. Mycotaxon, 2013, 124: 279-300. |
[27] | Heuvel R N V D, Biezen E V D, Jetten M S M, Hefting M M, Kartal B. Denitrification at pH 4 by a soil-derived Rhodanobacter-dominated community[J]. Environmental Microbiology, 2010, 12(12): 3264-3271. |
[28] | 张珂飞, 钟永嘉, 孙丽莉, 廖红. 植物有益伯克霍尔德氏菌的研究进展及其在农业中的应用[J]. 微生物学报, 2021, 61(8): 2205-2218. |
Zhang K F, Zhong Y J, Sun L L, Liao H. Plant-associated beneficial Burkholderia[J]. Acta Microbiologica Sinica, 2021, 61(8): 2205-2218. (in Chinese with English abstract) | |
[29] | 张科, 李臻, 郑瑶, 麻红星, 刘梦含, 丁慧杰, 王瑜, 刘丽, 夏西超. 河南叶县岩盐可培养中度嗜盐菌的多样性[J]. 微生物学通报, 2020, 47(12): 3987-3997. |
Zhang K, Li Z, Zheng Y, Ma H X, Liu M H, Ding H J, Wang Y, Liu L, Xia X C. Biodiversity of culturable moderate halophilic bacteria of rock salt in Yexian county, Henan Province[J]. Microbiology China, 2020, 47(12): 3987-3997. (in Chinese with English abstract) | |
[30] | Schlesinger W H. Evidence from chrono sequence studies for a low carbon-storage potential of soils[J]. Nature, 1990, 348(6298): 232-234. |
[31] | 赵惠丽, 董金琎, 师江澜, 徐苗, 田霄鸿. 秸秆还田模式对小麦-玉米轮作体系土壤有机碳固存的影响[J]. 土壤学报, 2021, 58(1): 213-224. |
Zhao H L, Dong J J, Shi J L, Shi J L, Xu M, Tian X H. Effect of straw returning mode on soil organic carbon sequestration[J]. Acta Pedologica Sinica, 2021, 58(1): 213-224. (in Chinese with English abstract) | |
[32] | 王保君, 王伟, 胡乃娟, 顾泽海, 陈兵林, 张政文, 徐蒋来, 朱利群. 麦秸还田下水氮管理对稻田土壤养分、酶活性及碳库的短期影响[J]. 核农学报, 2016, 30(5): 957-964. |
Wang B J, Wang W, Hu N J, Gu Z H, Chen B L, Zhang Z W, Xu J L, Zhu L Q. Short-term effect of different water and nitrogen managements on paddy soil nutrient, enzyme activity and carbon pool under wheat straw-returning fields[J]. Journal of Nuclear Agricultural Sciences, 2016, 30(5): 957-964. (in Chinese with English abstract) | |
[33] | Jandl R, Sollins P. Water-extractable soil carbon in relation to the belowground carbon cycle[J]. Biology and Fertility of Soils, 1997, 25: 196-201. |
[34] | Chantigny M H. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practices[J]. Geoderma, 2003, 113: 357-380. |
[35] | Chen H L, Zhou J M, Xiao B H. Characterization of dissolved organic matter derived from rice straw at different stages of decay[J]. Journal of Soils and Sediments, 2010, 10(5): 915-922. |
[36] | Kalbitz K, Solinger S, Park J H, Michalzik B, Matzner E. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165(4): 277-304. |
[37] | Garcia J, Kao-Kniffin J. Microbial group dynamics in plant rhizospheres and their implications on nutrient cycling[J]. Frontiers in Microbiology, 2023, 14: 1186322. doi: 10.3389/fmicb.2018.01516. |
[38] | Li X Z, Rui J P, Xiong J B, Li J B, He Z L, Zhou J Z, Yannarell A C, Mackie R I. Functional potential of soil microbial communities in the maize rhizosphere[J]. PLoS ONE, 2014, 9(11): e112609. |
[39] | 吴晋元, 职晓阳, 李岩, 关统伟, 唐蜀昆, 徐丽华, 李文均. 云南江城和黑井盐矿沉积物未培养放线菌多样性比较[J]. 微生物学报, 2008(10): 1550-1555. |
Wu J Y, Zhi X Y, Li Y, Guan T W, Tang S K, Xu L H, Li W J. Comparison of actinobacterial diversity in Jiangcheng and Heijing saline mines in Yunnan by using culture-independent approach[J]. Microbiology, 2008(10): 1550-1555. (in Chinese with English abstract) | |
[40] | Carniel F C, Fortuna L, Zanelli D, Tretiach M. Graphene environmental biodegradation: Wood degrading and saprotrophic fungi oxidize few-layer graphene[J]. Journal of Hazardous Materials, 2021: 125553. |
[1] | PENG Xianlong, DONG Qiang, ZHANG Chen, LI Pengfei, LI Bolin, LIU Zhilei, YU Cailian. Effects of Straw Return Rate on Soil Reducing Substances and Rice Growth Under Different Soil Conditions [J]. Chinese Journal OF Rice Science, 2024, 38(2): 198-210. |
[2] | ZHANG Yujie, WANG Zhiqiang, MA Peng, YANG Zhiyuan, SUN Yongjian, MA Jun. Effects of Water-nitrogen Coupling on Nitrogen Uptake, Utilization and Yield of Rice Under Wheat Straw Returning [J]. Chinese Journal OF Rice Science, 2022, 36(4): 388-398. |
[3] | Jinwen HUANG, Jiayi WU, Hongfei CHEN, Zhixing ZHANG, Changxun FANG, Caihong SHAO, Weiwei LIN, Peiying WENG, Wenxiong LIN. Nitrogen Fertilizer Management for Main Crop Rice and Its Carrying-over Effect on Rhizosphere Function and Yield of Ratoon Rice [J]. Chinese Journal OF Rice Science, 2021, 35(4): 383-395. |
[4] | Zhiyun PENG, Kaihong XIANG, Zhiyuan YANG, Yuan TANG, Jie SHEN, Yujie ZHANG, Yan HE, Tianrong YAN, Yongjian SUN, Jun MA. Effects of Straw Returning to Paddy Field and Nitrogen Fertilizer Management on Nitrogen Utilization Characteristics of Direct Seeded Hybrid Rice Under Wheat/Rape-rice Rotation [J]. Chinese Journal OF Rice Science, 2020, 34(1): 57-68. |
[5] | Yaozhu YIN, Changchun GUO, Yongjian SUN, Yunxia WU, Huaqing YU, Zhibai SUN, Qiao ZHANG, Haiyue WANG, Zhiyuan YANG, Jun MA. Effects of Rape Straw Retention and Water and Nitrogen Management on Population Quality and Yield of Hybrid Rice Under Rice-rape Rotation [J]. Chinese Journal OF Rice Science, 2019, 33(3): 257-268. |
[6] | Peng-gang PEI, Jun-hua ZHANG, Lian-feng ZHU, Zhi-hua HU, Qian-yu JIN. Effects of Straw Returning Coupled with N Application on Rice Photosynthetic Characteristics, Nitrogen Uptake and Grain Yield Formation [J]. Chinese Journal OF Rice Science, 2015, 29(3): 282-290. |
[7] | GE Lili, MA Yihu, BIAN Jinlong, WANG Zhiqin, YANG Jianchang, LIU Lijun *. Effects of Returning Maize Straw to Field and Sitespecific Nitrogen Management on Grain Yield and Quality in Rice [J]. Chinese Journal of Rice Science, 2013, 27(2): 153-160. |
[8] | WANG Yan-rong ,Iwaishi SHINJI ,Takaaki MIKI ,HUA Ze-tian ,ZHANG San-yuan ,DAI Gui-jin. Effects of Effective Microorganisms Continual Application in Paddy Fields in Natural Farming [J]. Chinese Journal of Rice Science, 2006, 20(4): 443-446 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||