;水稻;单核苷酸多态性," /> 水稻microRNA 单核苷酸多态性
中国水稻科学
     首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  留言板  |  联系我们  |  English
中国水稻科学  2011, Vol. 25 Issue (5): 467-474    DOI: 10.3969/j.issn.10017216.2011.05.003
研究报告 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
水稻microRNA 单核苷酸多态性
于颢, 闫旭, 郭卫东, 辛德东*
浙江师范大学  化学与生命科学学院, 浙江  金华321004
Single Nucleotide Polymorphism of  MicroRNA in  Rice
YU Hao, YAN Xu, GUO Weidong,  XIN Dedong*
Chemistry and Life Science College, Zhejiang Normal University,  Jinhua 321004, China
 全文: PDF (1824 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 microRNA(miRNA)是一类内源性非编码小RNA,长度约22个核苷酸。miRNA通过与靶基因mRNA特定位点结合,调控植物生长、发育和胁迫耐受性。premiRNA的单核苷酸突变会影响miRNA的成熟过程和调控功能,因此,研究miRNA基因中的单核苷酸多态性(SNP)分布对研究miRNA功能分化和基因进化有重要意义。为探讨水稻miRNA基因单核苷酸多态性及其潜在生物学意义,基于现有水稻SNP数据,分析了水稻premiRNA区、侧翼区(位于premiRNA上下游,与premiRNA等长的区间)的SNP分布。与已经报道过的绝大多数生物不同, SNP在水稻premiRNA区的频率与侧翼区无显著差异。进一步研究SNP在premiRNA二级结构中的分布,发现种子区SNP频率跟茎区、环区也无显著差异。然而,SNP在水稻基因区分布跟其他生物相似,即基因区SNP频率显著低于基因侧翼区。这可能暗示premiRNA侧翼区功能对miRNA非常重要,也可能与SNP在不同miRNA基因之间的分布不均衡有关,一部分miRNA基因正经历纯化选择压力放松,积累较多突变而成为新的基因或失去功能。但是以上结果并不排除是由于当前水稻SNP数据可靠性不高而导致的偏差。
服务
把本文推荐给朋友 ;水稻;单核苷酸多态性

”几篇好文章,特向您推荐。请点击下面的网址:" name=neirong>
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词microRNAfont-family: 宋体   mso-bidi-font-family: 宋体   mso-ansi-language: EN-US   mso-fareast-language: ZH-CN   ;水稻mso-bidi-language: AR-SA">;水稻font-family: 宋体   mso-bidi-font-family: 宋体   mso-ansi-language: EN-US   mso-fareast-language: ZH-CN   ;单核苷酸多态性')" href="#">mso-bidi-language: AR-SA">;单核苷酸多态性     
Abstract: MicroRNAs  (miRNAs) are a class of endogenous small (about 22 nucleotides), noncoding RNAs, which play important roles in plant growth, development and stress tolerance by binding to the target sites in mRNAs. Since a single nucleotide change in miRNAs can affect the maturity and regulation of miRNA, study  on the distribution of  single nucleotide polymorphisms (SNPs) in miRNA gene may be of great  importance  for functional and evolutionary research. In order to explore the potential functional significance of SNPs in the premiRNA in rice, we analyzed the distribution of SNPs in premiRNA region and flanking region, including 5′   and 3′ flanking regions in rice. The results showed that there was  no significant difference in  the frequency of SNPs between the premiRNA region and its flanking region in rice, which was different from the results  in other species. Further study on the frequency of SNPs   across premiRNA  secondary structures showed that there was no significant difference  between seed region and loop region, which was thought to undergo less negative selection pressure in other species. However, in consistent with  other species, the frequency of SNPs in  proteincoding  gene region of rice was significantly lower than that in gene flanking region,  indicating  that the flanking region of premiRNA may  be essential for the  function of miRNA. Another reseaon was the uneven distribution of SNPs in  different miRNAs. Some miRNAs were  less important to rice function,  thus was subjected to relaxation of selective pressure, accumulating more and more mutations to become a new gene or loss of functions. However, we could not rule out the bias in the results because of  the unreliable data in current SNP database.
Key wordsmicroRNAfont-family: 宋体   mso-bidi-font-family: 宋体   mso-ansi-language: EN-US   mso-fareast-language: ZH-CN   ;ricemso-bidi-language: AR-SA">;ricefont-family: 宋体   mso-bidi-font-family: 宋体   mso-ansi-language: EN-US   mso-fareast-language: ZH-CN   ;single nucleotide polymorphism')" href="#">mso-bidi-language: AR-SA">;single nucleotide polymorphism   
收稿日期: 2010-12-06;
基金资助:

浙江师范大学博士科研启动基金(ZC304009154)

通讯作者: 辛德东*     E-mail: xindedong@zjnu.cn
引用本文:   
. 水稻microRNA 单核苷酸多态性[J]. 中国水稻科学, 2011, 25(5): 467-474.
. Single Nucleotide Polymorphism of  MicroRNA in  Rice[J]. , 2011, 25(5): 467-474.
 
[1] 金龙国, 王川, 刘进元. 植物MicroRNA. 中国生物化学与分子生物学报, 2006, 22(8): 609614.
[2] Reinhar B J, Weinstein E G, Rhoades M W, et al. MicroRNAs in plants. Genes Dev, 2002, 16(13): 16161626.
[3] Bartel B, Bartel D P. MicroRNAs: At the root of plant development. Plant Physiol, 2003, 132(2): 709717.
[4] Chen K, Rajewsky N. Natural selection on human microRNA binding sites inferred from SNP data. Nat Genet, 2006, 38: 14521456.
[5] Park M Y, Wu G, GonzalezSulser A, et al. Nuclear processing and export of microRNAs in Arabdiopsis. Proc Natl Acad Sci USA, 2005, 102: 36913696.
[6] Guo H S, Xie Q, Fei J F, et a1. MicroRNA164 directs NAC1 mRNA cleavage to downregulate auxin signals for lateral root development. Plant Cell, 2005, 17(5): 13761386.
[7] Bao N L,Ye K W, Barton M K. MicroRNA binding sites in Arabidopsis class III HDZIP mRNAs are required for methylation of the template chromosome. Dev Cell, 2004, 7: 653662.
[8] Jiang M C, Jiang P C, Liao C F, et al. A modified mutation detection method for largescale cloning of the possible single nucleotide polymorphism sequences. Biochem Mol Biol, 2005, 38(2): 191197.
[9] Nasu S, Suzuki J, Ohta R, et al. Search for and analysis of single nucleotide polymorphisms (SNPs) in rice (Oryza sativa, Oryza rufipogon) and establishment of SNP markers. DNA Res, 2002, 9: 163171.
[10] Monnal L, Kitazawa N, Yoshino R, et al. Positional cloning of rice semidwarfing gene, sd1: Rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res, 2002, 9(1): 1117.
[11] Shen Y J, Jiang H, Jin J P, et al. Development of genomewide DNA polymorphism database for mapbased cloning of rice genes. Plant Physiol, 2004, 135: 11981205.
[12] Jin Q S, Waters D, Cordeiro G M, et al. A single nucleotide polymorphism (SNP) marker linked to the fragrance gene in rice (Oryza sativa L.). Plant Sci, 2003, 165: 359364.
[13] Umenmoto T, Aoki N. Singlenucleotide polymorphisms in rice starch synthase IIa that alter starch gelatinisation and starch association of the enzyme. Funct Plant Biol, 2005, 32(9): 763768.
[14] Hayashi K, Hashimoto N, Daigen M, et al. Development of PCRbased SNP markers for rice blast resistance genes at the Piz locus. Theor Appl Genet, 2004, 108: 12121220.
[15] Yamanaka S, Nakamura I, Watanabe K N, et al. Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice.Theor Appl Genet, 2004, 108: 12001204.
[16] Kanazin V, Talbert H, See D, et al. Discovery and assay of singlenucleotide polymorphisms in barley (Hordeum vulgare). Plant Mol Biol, 2002, 48: 529537.
[17] Zhu Y L, Song Q J, Hyten D L, et al. Singlenucleotide polymorphisms in soybean. Genetics, 2003, 163: 11231134.
[18] Batley J, Barker G, O′Sullivan H, et al. Mining for single nucleotide polymorphisms and insertions/deletions in maize expressed sequence tag data. Plant Physiol, 2003, 132: 8491.
[19] Morales M, Roig E, Monforte A J, et al. Singlenucleotide polymorphisms detected in expressed sequence tags of melon (Cucumis melo L.). Genome, 2004, 47: 352360.
[20] Feltus F A, Wan J, Schulze S R, et al. An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res, 2004, 14(9): 18121819.
[21] Saunder A M, Liang H, Li W H. Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA, 2007,104(9): 33003305.
[22] Ehrenreich M I, Purugganan D M. Sequence variation of microRNAs and their binding sites in Arabidopsis. Plant Physiol, 2008, 146: 19741982.
[23] Landi D, Gemignani F, Barale R, et al. A catalog of polymorphisms falling in microRNAbinding regions of cancer genes.DNA & Cell Biol, 2008, 27(1): 3543.
[24] Duan R H, Pak C H, Jin P. Single nucleotide polymorphism associated with mature miR125a alters the processing of primiRNA.Hum Mol Genet, 2007,16(9): 11241131.
[25] Schwach F, Moxon S, Moulton V, et al. Deciphering the diversity of small RNAs in plants: The long and short of it.Oxford J, 2009, 8(6): 472481.
[1] 金怡1,2,刘合芹1,汪得凯1,*,陶跃之1,*. 一个水稻苗期白条纹叶及抽穗期白穗突变体的鉴定和基因定位[J]. 中国水稻科学, 2011, 25(5): 461-466.
[2] 沈年伟1,#,来凯凯1,2,# ,粘金沯1,3 ,曾大力1,胡江1,高振宇1,郭龙彪1,朱丽1,刘坚1, 董国军1,颜美仙1,钱前1,*,张光恒1,* . 稻米出饭特性QTL分析及遗传研究[J]. 中国水稻科学, 2011, 25(5): 475-482.
[3] 徐建军1,2,赵强3,赵元凤1,朱磊1,徐辰武1,顾铭洪1,韩斌3,梁国华1,*. 利用重测序的水稻染色体片段代换系群体定位剑叶形态QTL[J]. 中国水稻科学, 2011, 25(5): 483-487.
[4] 赵海新1,2,杨丽敏1,陈书强1, 姜树坤3,黄晓群1,单莉莉1,潘国君1,*. 行距对两个不同类型水稻品种冠层结构与产量的影响[J]. 中国水稻科学, 2011, 25(5): 488-494.
[5] 符冠富#,宋健#,廖西元, 章秀福, 熊杰, 王熹乐, 明凯, 陶龙兴*. 中国常用水稻保持系及恢复系开花灌浆期耐热性评价[J]. 中国水稻科学, 2011, 25(5): 495-500.
[6] 吕艳东1,2,郑桂萍2,郭晓红2,殷大伟1,马殿荣1,徐正进1,陈温福1,*. 土壤水势下限对寒地水稻品质的影响[J]. 中国水稻科学, 2011, 25(5): 515-522.
[7] 龙继锐1,马国辉1,*,万宜珍1,宋春芳1,孙健2. 施氮量对超级杂交中稻生育后期剑叶叶绿素荧光特性的影响[J]. 中国水稻科学, 2011, 25(5): 501-507.
[8] 贺阳冬1,2,童 平1, 马均1,*,孙园园3,孙永健1,刘树金1,许远明4. 三角形强化栽培条件下移栽秧龄和密度对杂交稻Ⅱ优498结实期生理和产量的影响[J]. 中国水稻科学, 2011, 25(5): 508-514.
[9] 张荣胜1,2,陈志谊1,*,刘永锋1. 水稻细菌性条斑病菌遗传多样性和致病型分化研究[J]. 中国水稻科学, 2011, 25(5): 523-528.
[10] 王利华, 张月亮, 郭慧芳, 方继朝* . 毒死蜱对灰飞虱抗性和敏感种群的亚致死效应比较[J]. 中国水稻科学, 2011, 25(5): 529-534.
[11] 胡凝1,姚克敏1,张晓翠2,吕川根3,*. 水稻株型因子对冠层结构和光分布的影响与模拟[J]. 中国水稻科学, 2011, 25(5): 535-543.
[12] 斯华敏, 刘文真, 付亚萍, 孙宗修, 胡国成*. 我国两系杂交水稻发展的现状和建议[J]. 中国水稻科学, 2011, 25(5): 544-552.
[13] 艾治勇1,2, 马国辉1,青先国2,3,* . 超级杂交稻生理生态特性及高产稳产栽培调控的研究进展[J]. 中国水稻科学, 2011, 25(5): 553-560.
[14] 王斌1,刘贺梅2,毛毕刚3,高素伟3,徐宏斌1,葛建贵1,* . 水稻顶部小穗退化性状的QTL分析[J]. 中国水稻科学, 2011, 25(5): 561-564.
[15] 鄂志国1,王磊1,2,*. 中国水稻品种及其系谱数据库[J]. 中国水稻科学, 2011, 25(5): 565-566.
版权所有 © 《中国水稻科学》编辑部 浙ICP备05004719号-5
地 址:浙江省杭州市体育场路359号   邮 编:310006   电 话:0571-63370278   E-mail:cjrs@263.net
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn