中国水稻科学
     首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  留言板  |  联系我们  |  English
中国水稻科学  2011, Vol. 25 Issue (2): 130-135     DOI: 10.3969/j.issn.1001-7216.2011.02.002
综述与专论 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
光敏色素在水稻生长发育中的作用
顾建伟1,2; 刘婧2; 薛彦久2; 臧新1; 谢先芝2,3,*
1郑州大学 生物工程系, 河南 郑州 450001; 2山东省农业科学院 高新技术研究中心, 山东 济南 250100; 3农业部黄淮海作物遗传改良与生物技术重点实验室, 山东 济南 250100;*通讯联系人, E-mail: xzhxie2010@163.com)
Phytochrome Functions in Rice Development
GU Jian-wei 1,2 ; LIU Jing 2; XUE Yan-jiu 2; ZANG Xin 1; XIE Xian-zhi 2,3,*
1 Department of Bioengineering, Zhengzhou University, Zhengzhou 450001, China; 2 High-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China; 3 Laboratory of Crop Genetic Improvement and Biotechnology, Huanghuaihai, Ministry of Agriculture, Jinan 250100, China; *Corresponding author, E-mail: xzhxie2010@163.com)
 全文: PDF (377 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 光敏色素是植物体内的重要光受体,主要感受红光和远红光,调节着植物生命循环中许多重要发育过程。水稻光敏色素基因家族包括3个成员,即PHYA、PHYB 和PHYC。 对水稻光敏色素突变体的研究表明,3个水稻光敏色素基因在水稻光形态建成中既有独特作用又有交叉作用。根据已有报道和作者在该领域的研究工作,总结了光敏色素在水稻幼苗去黄化、根的向地性和延伸、株型、花期和育性等发育过程中的作用,并提出了水稻光敏色素研究领域急需解决的问题。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
顾建伟
刘婧
薛彦久
臧新
谢先芝
关键词:   
Abstract: Phytochrome family mainly senses red and far-red light to regulate a range of developmental processes throughout the life cycle of plants. Rice phytochrome gene family is composed of three members known as PHYA, PHYB and PHYC. It has been elucidated that individual phytochromes display both unique and overlapping roles in rice photomorphogenesis by characterization of all rice phytochrome mutants including single mutants, all combinations of double mutants as well as triple mutant. Based on the published data and authors′ ongoing studies, current knowledge of rice phytochrome functions in regulating seedling deetiolation, root gravitropic response and elongation, plant architecture, flowering time and fertility is summarized. Additionally, the important issues in the field of rice phytochromes are proposed.
Key words:   
收稿日期: 2010-04-04;
通讯作者: 谢先芝   
引用本文:   
顾建伟, 刘婧, 薛彦久等. 光敏色素在水稻生长发育中的作用[J]. 中国水稻科学, 2011, 25(2): 130-135 .
GU Jian-wei ,LIU Jing ,XUE Yan-jiu et al. Phytochrome Functions in Rice Development[J]. , 2011, 25(2): 130-135 .
 
[1] Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. Annu Rev Plant Biol, 2008, 59: 281-311.
[2] Suetsugu N, Wada M. Chloroplast photorelocation movement mediated by phototropin family proteins in green plants. Biol Chem, 2007, 388: 927-935.
[3] Takano M, Inagaki N, Xie X, et al. Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell, 2005, 17: 3311-3325.
[4] Quail P H. An emerging map of the phytochromes. Plant Cell Environ, 1997, 20: 657-665.
[5] Matsushita T, Mochizuki N, Nagatani A. Dimers of the N-terminal domain of phytochrome B are functional in the nucleus. Nature, 2003, 424: 571-574.
[6] Nagatani A. Light-regulated nuclear localization of phytochromes. Curr Opin Plant Biol, 2004, 7: 1-4.
[7] Quail P H. Phytochrome photosensory signalling networks. Nat Rev Mol Cell Biol, 2002, 3: 85-93.
[8] Takano M, Inagaki N, Xie X, et al. Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci USA, 2009, 106: 14705-14710.
[9] Rockwell N C, Su Y S, Lagarias J C. Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol, 2006, 57: 837-858.
[10] Khanna R, Shen Y, Mario C M, et al. The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms. Plant Cell, 2007, 19: 3915-3929.
[11] Sharrock R A, Quail P H. Novel phytochrome sequences in Arabidopsis thaliana: Structure, evolution and differential expression of a plant regulatory photoreceptor family. Genes Dev, 1989, 3: 1745-1757.
[12] Clack T, Mathews S, Sharrock R A. The phytochrome apoprotein family in Arabidopsis is encoded by five genes: The sequences and expression of PHYD and PHYE. Plant Mol Biol, 1994, 25: 413-427.
[13] Kay S A, Keith B, Shinozaki K, et al. The sequence of the rice phytochrome gene. Nucl Acids Res, 1989, 17: 2865-2866.
[14] Dehesh K, Tepperman J, Christensen A H, et al. phyB is evolutionarily conserved and constitutively expressed in rice seedling shoots. Mol Gen Genet, 1991, 225: 305-313.
[15] Tahir M, Kanegae H, Takano M. Phytochrome C (PHYC) gene in rice: Isolation and characterization of a complete coding sequence. Plant Physiol, 1998, 118: 1535.
[16] Basu D, Dehesh K, Schneider-Poetsch H J, et al. Rice PHYC gene: Structure, expression, map position and evolution. Plant Mol Biol, 2000, 44: 27-42.
[17] Takano M, Kanegae H, Shinomura T, et al. Isolation and characterization of rice phytochrome A mutants. Plant Cell, 2001, 13: 521-534.
[18] Xie X, Shinomura T, Inagaki N, et al. Phytochrome-mediated inhibition of coleoptile growth in rice: Age-dependency and action spectra. Photochem Photobiol, 2007, 83: 131-138. [19]Shimizu H, Tanabata T, Xie X, et al. Phytochrome-mediated growth inhibition of seminal roots in rice seedlings. Physiol Plant, 2009, 139: 289-297.
[19] Vriezen W H, Zhou Z Y, van Der S D. Regulation of submergence-induced enhanced shoot elongation in Oryza sativa L. Ann Bot (Lond), 2003, 91: 263-270.
[20] Mekhedov S I, Kende H. Submergence enhances expression of a gene encoding 1-aminocyclopropane-1-carboxylate oxidase in deepwater rice. Plant Cell Physiol, 1996, 37: 531-537.
[21] Ishikawa R, Tamaki S, Yokoi S, et al. Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice. Plant Cell, 2005, 17: 3326-3336.
[22] Ishikawa R, Shinomura T, Takano M, et al. Phytochrome dependent quantitative control of Hd3a transcription is the basis of the night break effect in rice flowering. Genes Genet Syst, 2009, 84: 179-184.
[23] Xie D X, Feys B F, James S, et al. COI1: An Arabidopsis gene required for jasmonate-regulated defense and fertility. Science, 1998, 280: 1091-1094 .
[24] Ishiguro S, Kawai-Oda A, Ueda J, et al. The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence,and flower opening in Arabidopsis. Plant Cell, 2001, 13: 2191-2209.
[25] Riemann M, Muller A, Korte A, et al. Impaired induction of the jasmonate pathway in the rice mutant hebiba. Plant Physiol, 2003, 133: 1820-1830.
[26] Haga K, Iino M. Phytochrome-mediated transcriptional up-regulation of ALLENE OXIDE SYNTHASE in rice seedlings. Plant Cell Physiol, 2004, 45(2): 119-128.
[27] Kang C Y, Lian H L, Wang F F, et al. Cryptochromes, phytochromes, and COP1 regulate light-controlled stomatal development in Arabidopsis. Plant Cell, 2009, 21: 2624-2641.
[28] Wang F F, Lian H L, Kang C Y, et al. Phytochrome B is involved in mediating red light-induced stomatal opening in Arabidopsis thaliana. Mol Plant, 2010, 3: 246-259.
[29] 王海, 周玉萍, 王小兰, 等. 破坏光敏色素A改变生长素反应因子8的表达谱. 植物学报, 2009, 44(4): 434-441.
[30] 洪波, 史春凤, 张晓娇, 等. 菊花观赏性状和农艺性状基因工程改良研究进展. 中国农业科学, 2009, 42(4): 1348-1358.
[31] 吴峰华, 常银子, 杨虎清. 转反义PHYA基因对番茄红素合成的影响. 园艺学报, 2009, 36(5): 679-684.
[32] Nakamura Y, Kato Y, Yamashino Y, et al. Characterization of a set of phytochrome-interacting-factor like bHLH protein in Oryza sativa. Biosci Biotechnol Biochem, 2007, 71: 1183-1191.
没有找到本文相关文献
版权所有 © 《中国水稻科学》编辑部 浙ICP备05004719号-5
地 址:浙江省杭州市体育场路359号   邮 编:310006   电 话:0571-63370278   E-mail:cjrs@263.net
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn