中国水稻科学
     首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  留言板  |  联系我们  |  English
中国水稻科学  2011, Vol. 25 Issue (2): 136-142     DOI: 10.3969/j.issn.1001-7216.2011.02.003
研究报告 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
水稻多聚半乳糖醛酸酶抑制蛋白基因(Ospgip1)原核表达及编码产物生物信息学分析
陈夕军1, 2 ;刘晓维1;左示敏2;童蕴慧1;潘学彪2,*;徐敬友1,*

(1扬州大学 园艺与植物保护学院, 江苏 扬州 225009; 2 扬州大学 江苏省作物遗传生理重点实验室/植物功能基因组学教育部重点实验室, 江苏 扬州 225009; *通讯联系人, E-mail: shuidao@yzu.edu.cn; jyxu@yzu.edu.cn)

Prokaryotic Expression of Polygalacturonase-Inhibiting Protein Gene (Ospgip1) from Rice and Bioinformatics Analysis of Its Coding Product

CHEN Xi-jun 1, 2, LIU Xiao-wei 1, ZUO Shi-min 2, TONG Yun-hui 1, PAN Xue-biao 2,*, XU Jing-you 1,*
(1Horticulture and Plant Protection College, Yangzhou University, Yangzhou 225009, China; 2Key Laboratory of Plant Functional Genomics of Ministry of Education/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China; *Corresponding author, E-mail: shuidao@yzu.edu.cn; jyxu@yzu.edu.cn)
 全文: PDF (1297 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 据GenBank及相关文献提供的序列,从水稻基因组DNA中扩增出930 bp的Ospgip1基因完整开放阅读框。原核表达Ospgip1基因,表达产物能显著抑制水稻纹枯病菌菌丝生长及其多聚半乳糖醛酸酶活性。生物信息学分析表明,OsPGIP1为分子量32.8 kDa、pI 7.26的疏水蛋白,主要位于细胞壁(55.6%),信号肽切点位于第17和18位氨基酸之间。在N端和C端各有4个半胱氨酸残基,形成3个二硫键(第56和63位、第278和298位、第300和308位氨基酸)。以α-螺旋、β-折叠和不规则盘绕等为主要结构原件,具有典型的富含亮氨酸重复(LRR)结构。相比其他植物的PGIP,OsPGIP1缺少第7个LRR。在空间上9个LRR形成类似凹陷或裂隙结构,可能是其与病原菌多聚半乳糖醛酸酶互作的活性位点区。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈夕军
刘晓维
左示敏
童蕴慧
潘学彪
徐敬友
关键词多聚半乳糖醛酸酶抑制蛋白   原核表达   生物信息学分析     
Abstract: According to the sequences of GenBank and relative references, a fragment of 930 bp including the total open reading frame of Ospgip1 gene was amplified. Prokaryotic expression product of the gene could inhibit the growth and polygalacturonase (PG) activity of Rhizoctonia solani, the pathogen of rice sheath blight. Bioinformatics analysis showed that OsPGIP1 was a hydrophobic protein with a molecular weight of 32.8 kDa and a pI of 7.26. The protein was mainly located in the cell wall of rice, and the splice site of its signal peptide was between the 17th and 18th amino acid residue. There were four cysteines in the N- and C-terminal of the deduced amino acid sequence, respectively, forming three disulfide bonds (Between 56th and 63rd, 278th and 298th, 300th and 308th amino acid residue, respectively). The main structural elements of the deduced protein, which showed the typical leucine-rich repeat(LRR) modular organization, were α-helix, β-sheet and irregular circle. Comparing to PGIPs of other plants, the 7th LRR of this protein was absent. The nine LRRs could form a cleft which would be the activity site domain between the protein-protein interaction of the PGIP from rice and PG from the pathogenic fungi.
Key wordspolygalacturonase-inhibiting protein   prokaryotic expression   bioinformatics analysis   rice sheath blight   rice   
收稿日期: 2010-06-26;
引用本文:   
陈夕军, ,刘晓维等. 水稻多聚半乳糖醛酸酶抑制蛋白基因(Ospgip1)原核表达及编码产物生物信息学分析[J]. 中国水稻科学, 2011, 25(2): 136-142 .
CHEN Xi-jun ,LIU Xiao-wei ,ZUO Shi-min et al. Prokaryotic Expression of Polygalacturonase-Inhibiting Protein Gene (Ospgip1) from Rice and Bioinformatics Analysis of Its Coding Product

[J]. , 2011, 25(2): 136-142 .
 
[1] Protsenko M A, Buza N L, Krinitsyna A A, et al. Polygalacturonase-inhibiting protein is a structural component of plant cell wall. Biochemistry, 2008, 73(10): 1053-1062. [2]Spinelli F, Mariotti L, Mattei B, et al. Three aspartic acid residues of polygalacturonase-inhibiting protein (PGIP) from Phaseolus vulgaris are critical for inhibition of Fusarium phyllophilum PG. Plant Biol, 2009, 11(5): 738-743. [3]Cervone F, Hahn M G, De Lorenzo G, et al. Host-pathogen interactions: ⅩⅩⅩⅢ. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol, 1989, 90: 542-548. [4]De Lorenzo G, D′Ovidio R, Cervone F. The role of polygacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi. Annu Rev Phytopathol, 2001, 39: 313-335. [5]Federici L, Di Matteo A, Fernandez-Recio J, et al. Polygalacturonases inhibiting proteins: Players in plant innate immunity Trends Plant Sci, 2006, 11(2): 65-70. [6]D′Ovidio R, Roberti S, Di Giovanni M, et al. The characterization of the soybean polygalacturonase-inhibiting proteins (Pgip) gene family reveals that a single member is responsible for the activity detected in soybean tissues. Planta, 2006, 224: 633-645. [7]Stotz H U, Contos J J A, Powell A L T, et al. Structure and expression of an inhibitor of fungal polygalacturonases from tomato. Plant Mol Biol, 1994, 25: 607-617. [8]James J T, Dubery I A. Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase inhibiting protein from cotton. Phytochemistry, 2001, 57: 149-156. [9]Li R, Rimmer R, Yu M, et al. Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses. Planta, 2003, 217: 299-308. [10]Favaron F. Gel detection of Allium porrum polygalacturonase inhibiting protein reveals a high number of isoforms. Physiol Mol Plant Pathol, 2001, 58: 239-245. [11]Michela J, Michela D G, Serena R, et al. Characterization of expressed pgip genes in rice and wheat reveals similar extent of sequence variation to dicot PGIPs and identifies an active PGIP lacking an entire LRR repeat. Theor Appl Genet, 2006, 113: 1233-1245. [12]Birgitt O, Patrick M H, Ulrike M, et al. Polygalacturonase is a pathogenicity factor in the Claviceps purpurea/rye interaction. Fungal Genet Biol, 2002, 36(3): 176-186. [13]陈夕军, 张红, 徐敬友. 等. 水稻纹枯病菌胞壁降解酶的产生及致病作用. 江苏农业学报, 2006, 22(1): 24-28. [14]Michela J, Luca S, Francesco F, et al. The expression of a bean PGIP in transgenic wheat confers increased resistance to fungal pathogen Bipolaris sorokiniana. Am Phytopathol Soc, 2008, 21(2): 171-177. [15]Khanuja S P S, Shasany A K, Darokar M P, et al. Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils. Plant Mol Biol Rep, 1999, 17: 1-7. [16]Chung C T, Niemela S L, Miller R H. One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci USA, 1989, 86(8): 2172-2175. [17] 张梅, 郭丽清, 关夏玉, 等. AiiA融合蛋白包涵体变性和复性研究. 福建师范大学学报, 2008, 24(4): 76-79. [18]Clark E D B. Refolding of recombinant proteins. Curr Opin Biotechnol, 1998, 9: 157-163. [19]陈夕军, 王友德, 左示敏, 等. 水稻纹枯病菌PG的分离纯化及其理化性质研究.植物病理学报, 2010, 40(3): 276-281. [20]Cheng J, Randall A Z, Sweredoski M J, et al. SCRATCH: a protein structure and structural feature prediction server. Nucl Acids Res, 2005, 33(7): 72-76. [21]Fong J H, Keating A E, Singh M. Predicting specificity in bZIP coiled-coil protein interactions. Genome Biol, 2004, 5(2): 2-10. [22]Lambert C, Leonard N, Bolle X D, et al. ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 2002, 18(9): 1250-1256. [23]Harrison R G. Expression of soluble heterologous proteins via fusion with NusA protein. InNovation, 2000, 11: 4-7. [24]Gasteiger E, Hoogland C, Gattiker A, et al. The Proteomics Protocol Handbook. Totow: Humana Press, 2005: 571-607. [25]Cserzo M, Eisenhaber F, Eisenhaber B, et al. On filtering false positive transmembrane protein predictions. Protein Eng, 2002, 15(9): 745-752. [26]Nakao M C, Nakai K. Improvement of PSORT II protein sorting prediction for mammalian proteins. Genome Informatics, 2002, 13: 441-442. [27]Bendtsen J D, Nielsen H, Heijne G V, et al. Improved prediction of signal peptides: Signal P 3.0. J Mol Biol, 2004, 340(4): 783-795. [28]Blom N, Gammeltoft S, Brunak S. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol, 1999, 294: 1351-1362. [29] 廖皓年, 肖陵生, 王华生.水稻纹枯病发生历史及演变原因简析. 广西植保, 1997(3): 35-38. [30] 左示敏, 张亚芳, 殷跃军, 等. 田间水稻纹枯病抗性鉴定体系的确立与完善. 扬州大学学报: 农业与生命科学版, 2006, 27(4): 57-61. [31] Sicilia F, Fernandez-Recio J, Caprari C, et al. The polygalacturonase-inhibiting protein PGIP2 of Phaseolus vulgaris has evolved a mixed mode of inhibition of endo-polygalacturonase PG1 of Botrytis cinerea. Plant Physiol, 2005, 139: 1380-1388. [32]Leckie F, Mattei B, Capodicasa C, et al. The specificity of polygalacturonase-inhibiting protein (PGIP): A single amino acid substitution in the solvent-exposed beta-strand/beta-turn region of the leucine-rich repeats (LRRs) confers a new recognition capability. EMBO J, 1999, 18(9): 2352-2363. [33]Bishop J G. Directed mutagenesis confirms the functional importance of positively selected sites in polygalacturonase inhibitor protein. Mol Biol Evol, 2005, 22: 1531-1534.
[1] 王 玲,刘连盟,傅 强,黄世文. 新霉素磷酸转移酶基因nptⅡ的原核表达、蛋白纯化及其活性鉴定[J]. 中国水稻科学, 2011, 25(3): 326-330 .
[2] 刘连盟,王玲,黄雯雯,刘恩勇,黄世文. 水稻稻曲病菌G蛋白β亚基基因的克隆、表达与序列分析[J]. 中国水稻科学, 2010, 24(4): 353-359 .
[3] 欧阳元龙,吴建祥,熊如意,周益军,周雪平. 水稻黑条矮缩病病毒外壳蛋白基因S10的原核表达、多克隆抗体制备及应用[J]. 中国水稻科学, 2010, 24(1): 25-30 .
[4] 汪仁, 沈文飚, 江玲, 刘玲珑, 翟虎渠, 万建民 . 水稻种子脂氧合酶基因OsLOX1的原核表达、纯化及鉴定[J]. 中国水稻科学, 2008, 22(2): 118-124 .
版权所有 © 《中国水稻科学》编辑部 浙ICP备05004719号-5
地 址:浙江省杭州市体育场路359号   邮 编:310006   电 话:0571-63370278   E-mail:cjrs@263.net
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn