\[1\]周国辉, 张曙光, 邹寿发, 等. 水稻新病害南方水稻黑条矮缩病发生特点及危害趋势分析. 植物保护, 2010, 36(2): 144146.
Zhou G H, Zhang S G, Zou S F, et al. Occurrence and damage analysis of a new rice dwarf disease caused by Southern rice blackstreaked dwarf virus. Plant Prot, 2010, 36(2): 144146. (in Chinese with English abstract)
\[2\]周雪平, 濮祖芹, 方中达. 黄瓜花叶病毒(CMV)土壤非介体传播研究. 南京农业大学学报, 1994, 17(2): 3942.
Zhou X P, Pu Z Q, Fang Z D. Nonvectored soil transmission of cucumber mosaic virus. J Nanjing Agric Univ, 1994, 17(2): 3942. (in Chinese with English abstract)
\[3\]Keeling B L. Effect of soybean mosaic virus on root volume and dry weight of soybean plants. Crop Sci, 1982, 22(3): 629630.
\[4\]陈德鑫, 王凤龙, 李多川, 等. 山东烟草病毒病发生特点及防治对策. 中国烟草科学, 2007, 28(1): 2528.
Chen D X, Wang F L, Li D C, et al. Epidemic characteristics of tobacco virus disease and control measures in Shandong Province. Chin Tob Sic. 2007, 28(1):2528. (in Chinese with English abstract)
\[5\]王煜炜, 冯俊丽, 林若虹, 等. 病毒侵染对番茄根茎组织中miRNAs调控通路的影响. 北京: 中国科技论文在线\[20120223\]. http: //www.paper.edu.cn/releasepaper/content/201202928.
Wang Y W, Feng J L, Lin R H, et al. The interference of miRNAs pathway during tomato root and stem tissues development upon virus infections. Beijing: Sciencepaper Online\[20120223\]. http://www.paper.edu.cn/releasepaper/content/201202928.
\[6\]林奇英, 谢联辉, 谢荔岩, 等. 中菲两种水稻病毒病的比较研究: Ⅱ.水稻草状矮化病的病原学//谢联辉. 水稻病毒:病理学与分子生物学. 福州: 福建科学技术出版社, 2001:176180.
Lin Q Y, Xie L H, Xie L Y, et al. Comparative study on two kinds of rice virus disease between China and Philippines: Ⅱ. Pathogen of rice grassy stunt virus disease//Xie L H. Rice Virus:Pathology and Molecular Biology. Fuzhou: Fujian Science & Technology Publishing House, 2001:176180.
\[7\]丁新伦, 谢荔岩, 潘贤, 等. 水稻草状矮化病毒侵染下水稻根发育相关基因的表达分析. 中国农学通报, 2014, 30(36): 120123.
Ding X L, Xie L Y, Pan X, et al. Transcriptional analysis of the root development related genes in host rice (Oryza sativa) infected with Rice grassy stunt virus. Chin Agric Sci Bull, 2014, 30(36):120123. (in Chinese with English abstract)
\[8\]Carpentier S C, Witters E, Laukens K, et al. Preparation of protein extracts from recalcitrant plant tissues: An evaluation of different methods for twodimensional gel electrophoresis analysis. Proteomics, 2005, 5: 24972507.
\[9\]丁新伦, 谢荔岩, 吴祖建. 水稻草状矮化病毒侵染寄主水稻差异表达蛋白的鉴定和分析. 中国农业科学, 2014, 47(9):17251734.
Ding X L, Xie L Y, Wu Z J. Identification and analysis of differentially expressed proteins of host rice (Oryza sativa) infected with Rice grassy stunt virus. Sci Agric Sin, 2014, 47(9): 17251734. (in Chinese with English abstract)
\[10\]Chomchan P, Miranda G J, Shirako Y. Detection of rice grassy stunt tenuivirus nonstructural proteins p2, p5 and p6 from infected rice plants and from viruliferous brown planthoppers. Arch Virol, 2002, 147(12): 22912300.
\[11\]Kakutani T, Hayano Y, Hayashi T, et al. Ambisense segment 4 of rice stripe virus: Possible evolutionary relationship with phleboviruses and uukuviruses (Bunyaviridae). J Gen Virol, 1990, 71: 14271432.
\[12\]Zhu Y, Hayakawa T, Toriyama S. Complete nucleotide sequence of RNA4 of rice stripe virus isolate T and comparison with another isolate and with maize stripe virus. J Gen Virol, 1992, 73: 13091312.
\[13\]Sangster TA, Queitsch C. The HSP90 chaperone complex, an emerging force in plant development and phenotypic plasticity. Curr Opin Plant Biol, 2005, 8: 8692.
\[14\]Liu Y, BurchSmith T, Schiff M, et al. Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J Biol Chem, 2004, 279: 21012108.
\[15\]Wang G F, Wei X N, Fan R C, et al. Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): Functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytol, 2011, 191(2): 418431.
\[16\]Velazhahan R, Chencole K, Anuratha C S, et al. Induction of thaumatinlike protein(TLPs)in Rhizoctoniasolaniinfected rice and characterization of two new cDNA clones. Physiol Plantarum, 1998, 102: 2128.
\[17\]Fu D, Tisserat N A, Xiao Y, et al. Overexpression of rice TLPD34 enhances dollarspot resistance in transgenic bentgrass. Plant Sci, 2005, 168(3): 671680.
\[18\]Qi X, Bao F S, Xie Z. Small RNA deep sequencing reveals role for Arabidopsis thaliana RNAdependent RNA polymerases in viral siRNA biogenesis. PLoS ONE, 2009, 4(3): e4971.
\[19\]Xie Z, Fan B, Chen C, et al. An important role of an inducible RNAdependent RNA polymerase in plant antiviral defense. PNAS, 2001, 98(11): 65166521.
\[20\]Yu D, Fan B, MacFarlane S A, et al. Analysis of the involvement of an inducible Arabidopsis RNAdependent RNA polymerase in antiviral defense. Mol Plant Microbe Interact, 2003, 16(3): 206216.
\[21\]Jiang L, Qian D, Zheng H, et al. RNAdependent RNA polymerase 6 of rice (Oryza sativa) plays role in host defense against negativestrand RNA virus, Rice stripe virus. Virus Res, 2012, 163(2): 512519.
\[22\]LaCamera S, Gouzerh G, Dhondt S, et al. Metabolic reprogramming in plant innate immunity: The contributions of phenylpropanoid and oxylipin pathways. Immunol Rev, 2004, 198(1): 267284.
\[23\]Vogt T. Phenylpropanoid biosynthesis. Mol Plant, 2010, 3(1): 220.
\[24\]Gruner K, Griebel T, Návarová H, et al. Reprogramming of plants during systemic acquired resistance. Front Plant Sci, 2013, 4: 128.
\[25\]Malamy J, Carr J P, Klessig D F, et al. Salicylic acid : A likely endogenous signal in the resistance response of tobacco to viral infection. Science, 2014, 80(250): 10021004.
\[26\]Tonnessen B W, Manosalva P, Lang J M, et al. Rice phenylalanine ammonialyase gene OsPAL4 is associated with broad spectrum disease resistance. Plant Mol Biol, 2015, 87(3): 273286. |