中国水稻科学
     首页  |  期刊介绍  |  编 委 会  |  投稿指南  |  期刊订阅  |  广告服务  |  留言板  |  联系我们  |  English
中国水稻科学  2010, Vol. 24 Issue (4): 410-416     DOI: 10.3969/j.issn.1001-7216.2010.04.013
综述与专论 最新目录 | 下期目录 | 过刊浏览 | 高级检索  |   
转基因水稻外源蛋白检测技术研究进展
黄国平1,汪琳2,陈克平1,*
1江苏大学 生命科学研究院/食品与生物工程学院, 江苏 镇江 212013; 2北京出入境检验检疫局 检验检疫技术中心, 北京 100026; *通讯联系人, E-mail: kpchen@ujs.edu.cn
A Review on Detection Technologies for Exogenous Proteins in Transgenic Rice
HUANG Guo-ping1, WANG Lin2, CHEN Ke-ping1,*
1Institute of Life Sciences/School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; 2 Inspection and Quarantine Technology Center, Beijing EntryExit Inspection and Quarantine Bureau, Beijing 100026, China; *Corresponding author, E-mail: kpchen@ujs.edu.cn
 全文: PDF (458 KB)   HTML (1 KB)   输出: BibTeX | EndNote (RIS)      背景资料
摘要 随着转基因水稻研究及其向产业化的发展,检测转基因水稻中存在的外源蛋白成为该领域的研究热点。阐述了目前检测转基因水稻外源蛋白(EPTR)采用的技术手段,并列举了一些可能用于EPTR检测的潜在蛋白检测技术,初步分析了EPTR检测技术需要解决的问题,并预测了EPTR检测技术的发展趋势。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄国平
汪琳
陈克平
关键词转基因水稻   外源蛋白   检测技术     
AbstractWith the development of transgenic rice research and industrialization, it becomes a hot research area to detect exogenous proteins in transgenic rice (EPTR). Here, current detection technologies used for detecting EPTR and other potential protein detections were described, and the problems for these technologies were preliminarily analyzed. In the end, trends of detection technologies for EPTR were predicted.
Key wordstransgenic rice   exogenous protein   detection technology   
收稿日期: 1900-01-01;
引用本文:   
黄国平,汪琳,陈克平等. 转基因水稻外源蛋白检测技术研究进展 [J]. 中国水稻科学, 2010, 24(4): 410-416 .
HUANG Guo-ping,WANG Lin,CHEN Ke-ping et al. A Review on Detection Technologies for Exogenous Proteins in Transgenic Rice[J]. , 2010, 24(4): 410-416 .
 
[1] 王旭静, 贾士荣. 国内外转基因作物产业化的比较. 生物工程学报, 2008, 24(4): 541-546.
[2] 段武德. 转基因植物检测. 北京:中国农业出版社, 2009: 49.
[3] 毛建军, 杨秀芬, 曾洪梅, 等. 水稻品种日本晴粳稻组培培养基的筛选及转稻瘟菌蛋白激发子基因植株的获得. 农业生物技术学报, 2008, 16(5): 824-830.
[4] Abe M, Fujiwara M, Kurotani K, et al. Identification of dynamin as an interactor of rice GIGANTEA by tandem affinity purification (TAP). Plant Cell Physiol, 2008, 49(3): 420-432.
[5] 汪海燕, 叶庆富. HPT-ELISA方法的建立及其在转基因水稻监测中的应用. 核农学报, 2007, 21(2): 168-172.
[6] Yarasi B, Sadumpati V, Immanni C P, et al. Transgenic rice expressing Allium sativum leaf agglutinin (ASAL) exhibits high-level resistance against major sap-sucking pests. BMC Plant Biol, 2008, 14(8): 102.
[7] 高方远, 陆贤军, 何树林, 等. 转基因抗虫性水稻恢复系选育及特性分析. 中国水稻科学, 2008, 22(4): 353-358. 浏览
[8] Grothaus G D, Bandla M, Currier T, et al. Immunoassay as an analytical tool in agricultural biotechnology. J AOAC Int, 2006, 89(4): 913-928.
[9] 潘家荣, 乔艳红, 张维, 等. Bt晶体蛋白CrylAc放射免疫检测技术研究. 核农学报, 2006, 20(6): 544-547.
[10] Zhi Q, Wang S, Chai M, et al. Transgenic mini-tomato and protection against alcohol-induced gastric injury. J Genet Genomics, 2007, 34(8): 756-763.
[11] 王栩, 林金明. 化学发光免疫分析技术新进展. 分析试验室, 2007, 26(6): 111-122.
[12] Roda A, Mirasoli M, Guardigli M, et al. Development and validation of a sensitive and fast chemiluminescent enzyme immunoassay for the detection of genetically modified maize. Anal Bioanal Chem, 2006, 384(6): 1269-1275.
[13] 郑姬, 蒋天伦, 府伟灵. 金磁微粒为载体的免疫PCR检测HIV-1 p24. 中华医院感染学杂志, 2008, 18(3): 301-304, 355.
[14] Niemeyer C M, Adler M, Wacker R. Detecting antigens by quantitative immuno-PCR. Nat Protocols, 2007, 2(8): 1918-1930.
[15] Adler M, Wacker R, Niemeyer C M. Sensitivity by combination: Immuno-PCR and related technologies. Analyst, 2008, 133(6): 702-718.
[16] 王松林. 时间分辨荧光免疫技术检测乙肝血清标志物的临床应用评价. 中国实用医药, 2009, 4(2): 70-71.
[17] Maple P A C, Gray J, Breuer J, et al. Performance of a time-resolved fluorescence immunoassay for measuring varicella-zoster virus immunoglobulin G levels in adults and comparison with commercial enzyme immunoassays and Merck glycoprotein enzyme immunoassay. Clin Vaccine Immunol, 2006, 13: 214-218.
[18] Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403(6770): 623-627.
[19] 姜伟, 王开正. 蛋白芯片技术在临床研究中的应用进展. 检验医学与临床, 2006, 3(7): 308-310.
[20] 韩伟, 顾鸣, 杨捷琳, 等.蛋白芯片检测法验证热加工肉及含肉食品的加热效果. 检验检疫科学, 2008, 18(3): 22-24.
[21] 王鲁雁, 干宁, 李天华, 等. 基于甲胎蛋白抗体和巯基丁二酰胺铜(Ⅱ)共固定修饰电极的人血清中甲胎蛋白免疫传感器. 传感技术学报, 2008, 21(10): 1659-1664.
[22] Zhang B, Zhang X, Yan H H, et al. A novel multi-array immunoassay device for tumor markers based on insert-plug model of piezoelectric immunosensor. Biosens Bioelectron, 2007, 23(1): 19-25.
[23] Nam J M, Thaxton C S, Mirkin C A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, 2003, 301(5641): 1884-1886.
[24] 张立营, 张红, 杨姝, 等. 利用生物条形码技术对蓝舌病毒VP7蛋白进行微量检测. 生物技术通讯, 2008, 19(5): 697-700.
[25] Georganopoulou D G, Chang L, Nam J M, et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer′s disease. Proc Natl Acad Sci USA, 2005, 102(7): 2273-2276.
[26] Luo J, Ning T, Sun Y, et al. Proteomic analysis of rice endosperm cells in response to expression of hGM-CSF. J Proteome Res, 2009, 8(2): 829-837.
[27] 柳武革, 薛庆中.豇豆胰蛋白酶抑制剂(CpTI) 基因在转基因水稻中的表达特性研究.分子植物育种, 2003, 1(2): 187-192.
[28] Lee S I, Lee S H, Choon Koo J. et al. Soybean Kunitz trypsin inhibitor (SKTI) confers resistance to the brown planthopper(Nilaparvata lugens Stl) in transgenic rice. Mol Breeding, 1999, 5(1): 1-9.
[29] 程仲毅, 薛庆中. 马铃薯蛋白酶抑制剂-Ⅱ基因在转基因水稻中的遗传及表达. 中国农业科学, 2003, 36(6): 603-609.
[30] Irie K, Hosoyama H, Takeuchi T. Transgenic rice established to express corn cystatin exhibits strong inhibitory activity against insect gut proteinases. Plant Mol Biol, 1996, 30(1): 149-157.
[31] 傅向东, 李德葆, Paul C. 雪莲凝集素(GNA) 基因的载体构建及在水稻中的整合表达. 浙江农业大学学报, 1997, 23(6): 730-734.
[32] 许明辉, 唐祚舜, 谭亚玲, 等. 几丁质酶-葡聚糖酶双价基因导入滇型杂交稻恢复系提高稻瘟病抗性的研究. 遗传学报, 2003, 30(4): 330-334.
[33] Qiu D, Mao J, Yang X, et al. Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Plant Cell Rep, 2009, 28(6): 925-933.
[34] 简玉瑜, 吴新荣, 莫豪葵, 等. 应用基因枪及花粉管通道法将蚕抗菌肽基因导入水稻获抗白叶枯病株系.华南农业大学学报, 1997, 18(4): 1-7.
[35] Hou X, Xie K, Yao J, et al. Homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc Natl Acad Sci USA, 2009, 106: 6410-6415.
[36] Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA, 2006, 103: 12987-12992.
[37] Wang F Z, Wang Q B, Kwon S Y, et al. Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol, 2005, 162: 465-472.
[38] Wu X, Shiroto Y, Kishitani S, et al. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Rep, 2009, 28: 21-30.
[39] Yang Z, Wu Y, Li Y, et al. OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol, 2009, 70: 219-229.
[40] Sato Y, Yokoya S. Enhanced tolerance to drought stress in transgenic rice plants overexpressing a small heat-shock protein, sHSP17.7. Plant Cell Rep, 2008, 27: 329-334.
[41] Prashanth S R, Sadhasivam V, Parida A. Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res, 2008, 17: 281-291.
[42] Xiao B, Huang Y, Tang N, et al. Overexpression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet, 2007, 115: 36-45.
[43] 王慧中, 黄大年, 鲁瑞芳, 等. 转mtlD/gutD双价基因水稻的耐盐性. 科学通报, 2000, 45(7): 724-729.
[44] Gao Y F, Jing Y X, Shen S H, et al. Transfer of lysine-rich protein gene into rice and production of fertile transgenic plants. Acta Bot Sin, 2001, 43: 506-511.
[45] Goto F, Yoshihara T, Shigemoto N, et al. Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol, 1999, 17: 282-286.
[46] Beyer P, Al-Babili S, Ye X, et al. Golden Rice: Introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr, 2002, 132(3): 506S-510S.
[47] 胡昌泉, 徐军望, 苏军, 等. 农杆菌介导法获得转可溶性淀粉合成酶基因籼稻.福建农业学报, 2003, 18(2): 65-68.
[48] 苏军, 胡昌泉, 吴方喜, 等. 农杆菌介导获得转淀粉分枝酶基因rbe1籼稻. 福建农林大学学报: 自然科学版, 2004, 3(1): 64-67.
[49] 徐晓晖, 郭泽建, 程志强, 等. 铁蛋白基因的水稻转化及其功能初步分析. 浙江大学学报:农业与生命科学版, 2003, 29(1): 49-54.
[50] Shrawat A K, Carroll R T, DePauw M, et al. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J, 2008, 6: 722-732.
[51] Seo H, Jung Y, Song S, et al. Increased expression of OsPT1, a high-affinity phosphate transporter, enhances phosphate acquisition in rice. Biotechnol Lett, 2008, 30: 1833-1838.
[52] 李钱峰, 刘巧泉, 张达江, 等.转基因水稻中重组植酸酶的表达. 中国水稻科学, 2006, 20(3): 243-247. 浏览
[53] 胡利华, 吴慧敏, 周泽民, 等. 利用农杆菌介导法将柠檬酸合成酶基因(CS) 导入籼稻品种明恢86. 分子植物育种, 2006, 4(2): 160-166.
[54] 孙辉, 黄其满, 苏金. 谷氨酰胺合成酶基因GS1和GS2的高效表达增强转基因水稻对氮素缺乏的耐性. 植物生理与分子生物学学报, 2005, 31(5): 492-498.
[55] 吴超, 傅亚萍, 朱丽, 等. 转高赖氨酸蛋白基因脆茎水稻的收获指数及秸秆赖氨酸含量的研究. 浙江农业学报, 2008, 20(4): 225-230.
[56] Clarke J L, Spetz C, Haugslien S, et al. Agrobacterium tumefaciens-mediated transformation of poinsettia, Euphorbia pulcherrima, with virus-derived hairpin RNA constructs confers resistance to Poinsettia mosaic virus. Plant Cell Rep, 2008, 27(6): 1027-1038.
[57] 佘建明, 张保龙, 梁流芳, 等. 草地早熟禾转葡萄糖氧化酶基因植株的获得. 江苏农业学报, 2006, 22(3): 217-221.
[58] 王玲, 于恒秀, 黄世文, 等. 抗褐飞虱和抗除草剂转基因粳稻新品系的选育及其中间试验. 扬州大学学报: 农业与生命科学版, 2008, 29(3): 23-27.
[59] Cao M X, Huang J Q, Wei Z M, et al. Engineering higher yield and herbicide resistance in rice by Agrobacterium-mediated multiple gene transformation. Crop Sci, 2004, 44: 2206-2213.
[60] 施利利, 王松文, 张欣, 等. 抗除草剂基因atzA在转基因水稻中的遗传. 南开大学学报:自然科学版, 2008, 41(6): 99-102.
[61] Yi K, Wu Z, Zhou J, et al. OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol, 2005, 138(4): 2087-2096.
[62] 程在全, 丁玉梅, 曾黎琼, 等.绿色荧光蛋白基因作为报告基因在水稻基因转化中的应用研究. 云南植物研究, 2002, 24 (3): 341-351.
[63] 潘素君, 戴良英, 刘雄伦, 等. 广谱抗稻瘟病基因Pi9对籼稻的转化研究. 分子植物育种, 2006, 4(5): 650-654.
[1] 刘寿东, 史佩剑, 江晓东, 姚克敏, 胡凝. 转基因水稻B2花粉活力的温度模型[J]. 中国水稻科学, 2011, 25(2): 219-222 .
[2] 左娇,强胜,宋小玲. 温室条件下抗除草剂转基因水稻与杂草稻杂交和回交后代的适合度分析[J]. 中国水稻科学, 2010, 24(6): 608-616 .
[3] 陆永良, 彭于发,王渭霞,孙兴强,陈丽娟,余柳青, . 抗除草剂转基因水稻基因漂移至常规栽培稻的频率研究初报 [J]. 中国水稻科学, 2010, 24(6): 663-666 .
[4] 陈德西,陈学伟,雷财林, 马炳田,王玉平,李仕贵,. 转Pi-d2基因水稻对稻瘟病的抗性分析[J]. 中国水稻科学, 2010, 24(1): 31-35 .
[5] 邵敏,肖姗姗,李林,黄万春,王金生. 转hrf1基因水稻对稻瘟病多小种非专化的稳定抗性[J]. 中国水稻科学, 2008, 22(5): 459-464 .
[6] 李科,王世全,吴发强,李双成,邓其明,王玲霞,梁越洋,李平. 农杆菌介导的转高赖氨酸蛋白基因(sb401)水稻T4代分析[J]. 中国水稻科学, 2008, 22(2): 131-136 .
[7] 朱丽,傅亚萍,刘文真,胡国成,斯华敏,唐克轩,孙宗修,. 利用共转化和花药培养技术快速获得无选择标记的三价转基因水稻[J]. 中国水稻科学, 2007, 21(5): 475-481 .
[8] 叶红霞,郭泽建,舒庆尧,徐晓晖,包劲松, 沈圣泉,. 两份转Fer基因富铁水稻特异种质应用价值的初步评价[J]. 中国水稻科学, 2007, 21(3): 270-274 .
[9] 高玉林,傅强,王锋,赖凤香,罗举,彭于发,张志涛. 转cry1Ac和CpTI双基因抗虫水稻对二化螟和大螟的致死效应及田间螟虫构成的影响[J]. 中国水稻科学, 2006, 20(5): 543-548 .
[10] 余柳青, 渠开山, 周勇军, 李迪, 刘小川, 张朝贤, 彭于发. 抗除草剂转基因水稻对稻田杂草种群的影响[J]. 中国水稻科学, 2005, 19(1): 68-73 .
[11] 朱素琴, 季本华, 焦德茂. 外源C4二羧酸对转玉米PEPC基因水稻C4光合途径的促进作用[J]. 中国水稻科学, 2004, 18(4): 326-332 .
[12] 白耀宇, 蒋明星, 程家安, 沈慧梅, 杨璞, 陈正贤, 姜永厚, 舒庆尧. 转Bt基因水稻Cry1Ab杀虫蛋白在水稻土中的降解[J]. 中国水稻科学, 2004, 18(3): 255-261 .
[13] 沈希宏, 崔海瑞, 张慧廉 , 程式华,. 转抗除草剂基因水稻与亲本的稻米理化特性及主要营养成分比较[J]. 中国水稻科学, 2004, 18(2): 181-183 .
[14] 袁红旭, 许新萍, 张建中, 郭建夫, 李宝健. 转几丁质酶基因(RC24)水稻中大2号抗纹枯病特性研究[J]. 中国水稻科学, 2004, 18(1): 39-42 .
[15] 刘志诚, 叶恭银, 傅强, 张志涛, 胡萃. 转cry1Ab基因水稻对拟水狼蛛捕食作用间接影响的评价[J]. 中国水稻科学, 2003, 17(2): 175-178 .
[16] 谢关林,王汉荣,孙漱沅,王公金. 水稻细菌性条斑病种子劳菌检测技术研究:Ⅱ.离体检测法[J]. 中国水稻科学, 1991, 5(3): 121-126 .
版权所有 © 《中国水稻科学》编辑部 浙ICP备05004719号-5
地 址:浙江省杭州市体育场路359号   邮 编:310006   电 话:0571-63370278   E-mail:cjrs@263.net
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn