中国水稻科学 ›› 2022, Vol. 36 ›› Issue (5): 467-475.DOI: 10.16819/j.1001-7216.2022.211226
李焱瑶1,2, 邓力华1, 李昕晏1, 李华1, 秦冠男1, 翁绿水1, 于江辉1, 李锦江1, 肖国樱1,3()
收稿日期:
2021-12-26
修回日期:
2022-02-25
出版日期:
2022-09-10
发布日期:
2022-09-09
通讯作者:
肖国樱
基金资助:
LI Yanyao1,2, DENG Lihua1, LI Xinyan1, LI Hua1, QIN Guannan1, WENG Lüshui1, YU Jianghui1, LI Jinjiang1, XIAO Guoying1,3()
Received:
2021-12-26
Revised:
2022-02-25
Online:
2022-09-10
Published:
2022-09-09
Contact:
XIAO Guoying
摘要:
【目的】使用草甘膦抗性基因替代潮霉素抗性基因,构建核不育繁殖系的转化载体,赋予繁殖系对除草剂草甘膦的抗性,规避现行政策对转基因作物中使用抗生素标记基因的限制。【方法】利用同源重组的方法,构建含草甘膦抗性基因Epsps#、花粉致死基因ZmAA1、核不育恢复基因OsEat1和红色荧光基因DsRed2的水稻eat1核不育基因繁殖系载体pC3300-Epsps-AA-Eat-Red;采用农杆菌介导法转化水稻。【结果】通过转化籼稻品系9K19-5获得普通核不育繁殖系Eat9K的转化植株318个。表型鉴定表明,单拷贝转化体Eat9K-3的花粉有可育和不育2种类型,种子有具有和不具有荧光信号2种类型,具有荧光信号的种子在发芽期能耐受浓度至少为1 g/L的草甘膦。建立的四引物检测法能够区分野生型Eat1基因和核不育eat1基因。【结论】证明载体pC3300-Epsps-AA-Eat-Red有效,创制了具有除草剂抗性的普通核不育繁殖系新种质,建立了区分野生型Eat1基因和核不育eat1基因的四引物检测法。
李焱瑶, 邓力华, 李昕晏, 李华, 秦冠男, 翁绿水, 于江辉, 李锦江, 肖国樱. 含草甘膦抗性标记的水稻核不育繁殖系载体构建与验证[J]. 中国水稻科学, 2022, 36(5): 467-475.
LI Yanyao, DENG Lihua, LI Xinyan, LI Hua, QIN Guannan, WENG Lüshui, YU Jianghui, LI Jinjiang, XIAO Guoying. Construction and Verification of Vector Containing Glyphosate Resistance Selection Marker for Multiplication of Common Genic Male Sterile Lines in Rice[J]. Chinese Journal OF Rice Science, 2022, 36(5): 467-475.
引物名称 Primer name | 引物序列(5′-3′) Primer sequence (5′-3′) | 用途 Application |
---|---|---|
Epsps-F | CTGGCGACAAGTCTATCTCAC | Epsps#基因检测 Epsps# gene detection |
Epsps-R | CCTGGAGCATCTTCTCGGTAT | |
ZmAA1-F | TTCCACGGTGGTTAGTGGTTACTTCT | ZmAA1基因检测 ZmAA1 gene detection |
ZmAA1-R | CTGTAGCTCAGCGAGTTCCATATCTC | |
Ltp-Eat1-F | TCCATGTAGTGGGTGGGATT | 转化体中Eat1基因检测 Detection of eat1 gene in transformants |
Ltp-Eat1-R | TAGGCCACGGTTATTCTCACG | |
Eat1-F | GGGTGTGAGCTTTCCGTCTT | 载体中Eat1基因检测 Detection of Eat1 gene in vector |
Eat1-R | GAAGATGGAGCCGTGGAGTT | |
DsRed2-F | CCTCCGAGAACGTCATCACC | DsRed2基因检测 DsRed2 gene detection |
DsRed2-R | TAGTCCTCGTTGTGGGAGGT | |
Eat1af | GCAACAGATCCAGCAGTATGAT | 区分Eat1与eat1基因 Distinguishing Eat1 from eat1 gene |
Eat1ar | GTAGCAGCGGTTCCAGACAGG | |
Eat1bf | GCAAACATCAACCCACTCCCA | |
Eat1br | TTTCCCTTGCCCTTTCCGAAC |
表1 本研究用到的引物序列
Table 1. Primer sequences used in the study.
引物名称 Primer name | 引物序列(5′-3′) Primer sequence (5′-3′) | 用途 Application |
---|---|---|
Epsps-F | CTGGCGACAAGTCTATCTCAC | Epsps#基因检测 Epsps# gene detection |
Epsps-R | CCTGGAGCATCTTCTCGGTAT | |
ZmAA1-F | TTCCACGGTGGTTAGTGGTTACTTCT | ZmAA1基因检测 ZmAA1 gene detection |
ZmAA1-R | CTGTAGCTCAGCGAGTTCCATATCTC | |
Ltp-Eat1-F | TCCATGTAGTGGGTGGGATT | 转化体中Eat1基因检测 Detection of eat1 gene in transformants |
Ltp-Eat1-R | TAGGCCACGGTTATTCTCACG | |
Eat1-F | GGGTGTGAGCTTTCCGTCTT | 载体中Eat1基因检测 Detection of Eat1 gene in vector |
Eat1-R | GAAGATGGAGCCGTGGAGTT | |
DsRed2-F | CCTCCGAGAACGTCATCACC | DsRed2基因检测 DsRed2 gene detection |
DsRed2-R | TAGTCCTCGTTGTGGGAGGT | |
Eat1af | GCAACAGATCCAGCAGTATGAT | 区分Eat1与eat1基因 Distinguishing Eat1 from eat1 gene |
Eat1ar | GTAGCAGCGGTTCCAGACAGG | |
Eat1bf | GCAAACATCAACCCACTCCCA | |
Eat1br | TTTCCCTTGCCCTTTCCGAAC |
图1 载体pC3300-Epsps-AA-Eat-Red的T-DNA区域和分子验证 A−载体pC3300-Epsps-AA-Eat-Red的T-DNA区域。Epsps#―草甘膦抗性基因;TNOS―来源于胭脂碱合成酶基因的终止子;PG47―来源于玉米多聚半乳糖醛酸酶基因的花粉特异性启动子;ZmAA1―玉米的α-淀粉酶基因,赋予花粉致死性的花粉致死基因;Tin2-1―来源于In2-1基因的终止子;PEat1―Eat1基因的启动子,Eat1在绒毡层表达,具有育性恢复作用;TEat1―Eat1基因的终止子;Ltp2―来源于大麦糊粉层的特异性启动子;DsRed2―来源于珊瑚的DsRed2基因,编码红色荧光蛋白;CaMV 35S polyA―花椰菜花叶病毒多聚腺苷酸化信号。B−质粒pC3300-Epsps-AA-Eat-Red酶切结果。M−DL 15000 DNA分子量标记;泳道1−完整质粒;泳道2−质粒经PacⅠ酶切。C−PCR检测载体中Epsps#、ZmAA1、Eat1和DsRed2基因。M−DL2000 DNA分子量标记;泳道1−检测pC3300-UbiEpsps-35sCry1Ca;泳道2−检测pC1300-Eat1;泳道3−检测pC3300-Epsps-AA-Eat-Red。
Fig. 1. T-DNA region of vector pC3300-Epsps-AA-Eat-Red and molecular identification. A, T-DNA region of vector pC3300-Epsps-AA-Eat-Red. Epsps# stands for the glyphosate resistance gene Epsps#;TNOS, The terminator of nopaline synthase gene; PG47, The pollen-specific promoter from maize polygalacturonase gene; ZmAA1, The alpha-amylase gene of maize conferring pollen lethality; Tin2-1, The terminator from the In2-1 gene; PEat1, The promoter of Eat1 gene; Eat1, The Eternal Tapetum 1 gene that recovers the stertility of eat1 mutation; TEat1, The terminator of Eat1 gene; Ltp2, The promoter of barley aleurone-specific gene Lipid transfer protein 2, DsRed2, The DsRed2 gene from a marine coral-like anemone Discosoma coding red fluorescent protein; CaMV 35S PolyA, The cauliflower mosaic virus polyadenylation signal. B, Digestion of plasmid pC3300-Epsps-AA-Eat-Red. M, DL 15000 DNA marker; Lane 1, Intact plasmid; Lane 2, The plasmid digested by PacI. C, PCR detection of Epsps#, ZmAA1, Eat1 and DsRed2 genes. M, DL2000 DNA marker; Lane 1, Detecting vector pC3300-UbiEpsps-35sCry1Ca; Lane 2, Detecting vector pC1300-Eat1; Lane 3, Detecting vector pC3300-Epsps-AA-Eat-Red.
图2 再生植株Eat9K的PCR检测结果 A―Epsps#基因检测;B―ZmAA1基因检测;C―Eat1基因检测;D―DsRed2基因检测。M―DL2000 DNA分子量标记;P―质粒pC3300-Epsps-AA-Eat-Red;CK―对照9K19-5;1~20―不同的Eat9K再生植株。
Fig. 2. PCR detection of regenerated Eat9K plant. A, Detection of Epsps# gene; B, Detection of ZmAA1 gene; C, Detection of Eat1 gene; D, Detection of DsRed2 gene. M, DL2000 DNA marker; P, Plasmid pC3300-Epsps-AA-Eat-Red; CK, Control 9K19-5; 1-20, Different regenerated plants of Eat9K.
图3 Southern杂交检测T2代Eat9K水稻中Epsps#基因 M―地高辛标记的DNA分子量标记;P―质粒pC3300-Epsps-AA- Eat-Red;CK―非转基因对照;3、6、12、15、17、23、24、28、35分别为Eat9K的不同转化株。
Fig. 3. Southern blotting of Epsps# gene in T2 generation of Eat9K. M, Dig labeled DNA marker II; P, Plasmid pC3300-Epsps-AA-Eat- Red; CK, Non-transgenic control; 3, 6, 12, 15, 17, 23, 24, 28 and 35 are different transformants of Eat9K, respectively.
图4 Eat9K-3的表型鉴定 A−花粉育性观察; B−种子荧光观察; C−除草剂耐受性观察。
Fig. 4. Phenotype identification of Eat9K-3. A, Observation of pollen fertility. B, Observation of fluorescent seeds; C, Assessment of herbicide tolerance.
株系编号 Number | 重复 Repeat | 种子有无荧光信号 Seed with or without red fluorescence | 实际值 Real value | 理论值 Theoretical value | χ2(1:1) | χ2(0.05,1)(1:1) |
---|---|---|---|---|---|---|
Eat9K-3 | 1 | 有 With | 474 | 486.5 | 0.642 | 3.84 |
无 Without | 499 | |||||
2 | 有 With | 549 | 561.0 | 0.513 | ||
无 Without | 573 | |||||
3 | 有 With | 232 | 230.5 | 0.020 | ||
无 Without | 229 |
表2 Eat9K-3的有荧光种子与无荧光种子卡平方检验
Table 2. Chi square test of seeds with and without red fluorescence in T2 generation of Eat9K-3.
株系编号 Number | 重复 Repeat | 种子有无荧光信号 Seed with or without red fluorescence | 实际值 Real value | 理论值 Theoretical value | χ2(1:1) | χ2(0.05,1)(1:1) |
---|---|---|---|---|---|---|
Eat9K-3 | 1 | 有 With | 474 | 486.5 | 0.642 | 3.84 |
无 Without | 499 | |||||
2 | 有 With | 549 | 561.0 | 0.513 | ||
无 Without | 573 | |||||
3 | 有 With | 232 | 230.5 | 0.020 | ||
无 Without | 229 |
图5 eat1基因的分子标记选择 A−Eat1和eat1基因测序结果与四引物设计。B−PCR检测Eat1和eat1基因。M−DL2000 DNA分子量标记;WT−受体品种9K19-5;eat1−eat1基因纯合的不育株;H−eat1基因杂合的第三代杂交稻单株;1~3−Eat9K-223杂交转育后的不同单株;4~10−Eat9K-242杂交转育后的不同单株;11−Eat9K-62杂交转育后的不同单株;12~17−Eat9K-150杂交转育后的不同单株;18~20−Eat9K-152杂交转育后的不同单株。
Fig. 5. Marker-assisted selection of eat1 gene. A, Sequencing results of Eat1 and eat1 genes and the design of four primers to detect Eat1 and eat1 genes. B, Detection of Eat1 and eat1 genes by PCR. M, DL2000 DNA marker; WT, Receptor variety 9K19-5; eat1, Sterile plant with homozygous eat1 gene; H, Plant of the third-generation hybrid rice with heterozygous eat1 gene; 1-3, Different plants from cross with Eat9K-223; 4-10, Different plants from cross with Eat9K-242; 11, Different plants from cross with Eat9K-62; 12-17, Different plants from cross with Eat9K-150; 18-20, Different plants from cross with Eat9K-152.
[1] | 国家统计局. 国家统计局农村司副司长王明华解读粮食生产情况[EB/OL]. (2021-2-06) [2022-2-03] http://www.stats.gov.cn/tjsj/sjjd/202112/t20211206_1825059.html. (in Chinese) |
National Bureau of Statistics of China. Wang Minghua, deputy director-general of the Department of National Bureau of Statistics of the People's Republic of China and rural affairs, explains the situation of food production. (2021-2-06) [2022-2-03] http://www.stats.gov.cn/tjsj/sjjd/202112/t20211206_1825059.html. (in Chinese) | |
[2] | 袁隆平, 唐传道. 杂交水稻选育的回顾、现状与展望[J]. 中国稻米, 1999 (4): 3-6. |
Yuan L P, Tang C D. Review, present situation and Prospect of hybrid rice breeding[J]. China Rice, 1999 (4): 3-6. (in Chinese with English abstract) | |
[3] | 雷永群, 宋书锋, 李新奇. 水稻杂种优势利用技术的发展[J]. 杂交水稻, 2017, 32(3): 1-9. |
Lei Y Q, Song S F, Li X Q. Development of Technologies for Heterosis Utilization in rice[J]. Hybrid Rice, 2017, 32(3): 1-9. (in Chinese with English abstract) | |
[4] | 陈乐天, 刘耀光. 水稻野败型细胞质雄性不育的发现利用与分子机理[J]. 科学通报, 2016, 61(35): 3804-3812. |
Chen L T, Liu Y G. Discovery, utilization and molecular mechanisms of CMS-WA in rice[J]. Chinese Science Bulletin, 2016, 61: 3804-3812. (in Chinese with English abstract) | |
[5] | 郑兴飞, 董华林, 郭英, 殷得所, 王红波, 胡建林, 查中萍, 曹鹏, 徐得泽. 两系法杂交水稻的育种成就与展望[J]. 作物研究, 2021, 35(5): 509-513. |
Zheng X F, Dong H L, Guo Y, Yin D S, Wang H B, Hu J L, Zha Z P, Cao P, Xu D Z. Achievements and prospects of two-line system hybrid rice breeding[J]. Crop Research, 2021, 35(5): 509-513. (in Chinese with English abstract) | |
[6] | 牟同敏. 中国两系法杂交水稻研究进展和展望[J]. 科学通报, 2016, 61(35): 3761-3769. |
Mou T M. The research progress and prospects of two-line hybrid rice in China[J]. Chinese Science Bulletin, 2016, 61: 3761-3769. (in Chinese with English abstract) | |
[7] | 肖国樱, 邓晓湘, 唐俐, 唐传道. 水稻光温敏核不育系育性波动的解决途径和方法[J]. 杂交水稻, 2000(4): 6-11. |
Xiao G Y, Deng X X, Tang L, Tang C D. Solutions to fertility fluctuation of photo thermo sensitive genic male sterile lines in rice[J]. Hybrid Rice, 2000(4): 6-11. | |
[8] | Liao C C, Yan W, Chen Z F, Xie G, Deng X W, Tang X Y. Innovation and development of the third-generation hybrid rice technology[J]. Crop Journal, 2021, 9(3): 693-701. |
[9] | Song S F, Wang T K, Li Y X, Hu J, Kan R F, Qiu M D, Deng Y D, Liu P X, Zhang L C, Dong H, Li C X, Yu D, Li X Q, Yuan D Y, Yuan L P, Li L. A novel strategy for creating a new system of third-generation hybrid rice technology using a cytoplasmic sterility gene and a genic male-sterile gene[J]. Plant Biotechnology Journal, 2021, 19(2): 251-260. |
[10] | 新华社. 第三代杂交水稻单季亩产创新纪录[EB/OL]. (2021-2-30) [2022-2-01]. http://www.agri.cn/province/fujian/nyyw/202109/t20210930_7763887.htm. |
Xinhua News Agency. Record of the third generation hybrid rice yield in single season[EB/OL]. (2021-2-30) [2022-2-01]. http://www.agri.cn/province/fujian/nyyw/202109/t20210930_7763887.htm. (in Chinese) | |
[11] | 余东. 第三代杂交水稻ptc1普通核不育系种子繁殖体系构建及应用[D]. 长沙: 湖南农业大学, 2020. |
Yu D. Construction and application of seeds propagation system for spontaneous genic male sterile line in the third generation hybrid rice[D]. Changsha: Hunan Agricultural University, 2020. (in Chinese with English abstract) | |
[12] | 曾崇华, 陈芬, 孟秋成, 于江辉, 肖友伦, 李锦江, 肖国樱. 水稻HD9802S/Kasalath后代中高组织培养力家系的筛选[J]. 杂交水稻, 2016, 31(1): 51-56. |
Zeng C H, Chen F, Meng Q C, Yu J H, Xiao Y L, Li J J, Xiao G Y. Selection of families with high tissue culture ability in filial generation of HD9802S/Kasalath in rice[J]. 2016, 31(1): 51-56. (in Chinese with English abstract) | |
[13] | 邓力华. Epsps、Gox和CrylCa基因的优化以及在水稻中的表达研究[D]. 合肥: 中国科学院大学, 2013. |
Deng L H. Optimizing and expressing of Epsps, Gox and Cry1Ca genes in rice[D]. Hefei: University of Chinese Academy of Sciences, 2013. (in Chinese with English abstract) | |
[14] | Gibson D G, Young L, Chuang R Y, Venter J. C, Hutchison C A,. Smith H O. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nature Methods, 2009, 6(5): 343-345. |
[15] | 王作平. 植酸酶-乳铁蛋白肽融合基因在水稻中的功能验证[D]. 合肥: 中国科学院大学, 2016. |
Wang Z P. Functional verification of a novel phytase- lactoferricin fusion gene in rice[D]. Hefei: University of Chinese Academy of Sciences, 2016. (in Chinese with English abstract) | |
[16] | 肖国樱, 肖友伦, 李锦江, 邓力华, 翁绿水, 孟秋成, 于江辉. 高效是当前水稻育种的主导目标[J]. 中国水稻科学, 2019, 33(4): 287-292. |
Xiao G Y, Xiao Y L, Li J J, Deng L H, Weng L S, Meng Q C, Yu J H. High efficiency is a dominant target for current rice breeding[J]. Chinese Journal of Rice Science, 2019, 33(4): 287-292. (in Chinese with English abstract) | |
[17] | 朱江月, 石云鹭. “绿色”除草剂—草甘膦[J]. 大豆科技, 2019(5): 40-43. |
Zhu J Y, Shi Y L. Green herbicide: Glyphosate[J]. Soybean Technology, 2019(5): 40-43. (in Chinese) | |
[18] | 肖国樱, 陈芬, 孟秋成, 周浩, 李锦江, 于江辉, 邓力华, 翁绿水. 我国转基因抗除草剂水稻的生态风险与控制[J]. 农业生物技术学报, 2015, 23(1): 1-11. |
Xiao G Y, Chen F, Meng Q C, Zhou H, Li J J, Yu J H, Deng L H, Weng L S. Ecological risk and management of herbicide-resistant transgenic rice(Oryza sativa) in China[J]. Journal of Agricultural Biotechnology, 2015, 23(1): 1-11. (in Chinese with English abstract) | |
[19] | Chang Z, Chen Z, Wang N, Xie G, Lu J, Yan W, Zhou J, Tang X, Deng X W. Construction of a male sterility system for hybrid rice breeding and seed production using a nuclear male sterility gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(49): 14145-14150. |
[20] | Qi X T, Zhang C S, Zhu J J, Liu C L, Huang C L, Li X H, Xie C X. Genome editing enables next-generation hybrid seed production technology[J]. Molecular Plant, 2020, 13(9): 1262-1269. |
[1] | 李亮杰,周海鹏,占小登,庄杰云,程式华,曹立勇. 水稻印尼水田谷型细胞质雄性不育恢复系R68的恢复基因初步定位[J]. 中国水稻科学, 2007, 21(5): 547-549 . |
[2] | 杨空松,陈小荣,傅军如,朱昌兰,彭小松,贺晓鹏,贺浩华. 东乡野生稻育性恢复性的鉴定与遗传分析[J]. 中国水稻科学, 2007, 21(5): 487-492 . |
[3] | 李广贤,屠国庆, 张克勤, 姚方印,庄杰云,. 应用微卫星标记定位水稻恢复系密阳46的主效和微效恢复基因[J]. 中国水稻科学, 2005, 19(6): 506-510 . |
[4] | 徐仁胜. 非环境敏感型核雄性不育水稻育性的化学调控初报[J]. 中国水稻科学, 1995, 9(4): 251-252 . |
[5] | 沈毓渭,蔡其华,高明尉. 水稻细胞质雄性不育性恢复突变的初步研究[J]. 中国水稻科学, 1994, 8(1): 27-31 . |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||