Chinese Journal OF Rice Science ›› 2018, Vol. 32 ›› Issue (4): 405-414.DOI: 10.16819/j.1001-7216.2018.7116
• Orginal Article • Previous Articles
Pengpeng MA1, Aiming ZHOU1, Qing YAO1,*(), Baojun YANG2, Jian TANG2,*(
), Xiuqiang PAN3
Received:
2017-09-21
Revised:
2017-12-17
Online:
2018-07-10
Published:
2018-07-10
Contact:
Qing YAO, Jian TANG
马鹏鹏1, 周爱明1, 姚青1,*(), 杨保军2, 唐健2,*(
), 潘修强3
通讯作者:
姚青,唐健
基金资助:
CLC Number:
Pengpeng MA, Aiming ZHOU, Qing YAO, Baojun YANG, Jian TANG, Xiuqiang PAN. Influence of Image Features and Sample Sizes on Rice Pest Identification[J]. Chinese Journal OF Rice Science, 2018, 32(4): 405-414.
马鹏鹏, 周爱明, 姚青, 杨保军, 唐健, 潘修强. 图像特征和样本量对水稻害虫识别结果的影响[J]. 中国水稻科学, 2018, 32(4): 405-414.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.ricesci.cn/EN/10.16819/j.1001-7216.2018.7116
Fig. 1. Rice light-trapped insect images. A, Big non-target insects; B, Small non-target insects; C, Back image of Sesamia inferens; D, Abdomen image of Sesamia inferens; E, Back image of Chilo suppressalis; F, Abdomen image of Chilo suppressalis; G, Back image of Cnaphalocrocis medinalis; H, Abdomen image of Cnaphalocrocis medinalis; I, Sogatella furcifera; J, Nilaparvata lugens.
样本分类 Material category | 昆虫种类 Insect species | 昆虫姿态 Insect posture | 用于训练的样本最大数 Max sample size of training images | 测试样本数 Sample size of testing images | |
---|---|---|---|---|---|
大型昆虫 Big insects | 大螟 Sesamia inferens | 背面Back image | 330 | 140 | |
腹面Abdomen image | 428 | ||||
稻纵卷叶螟 Cnaphalocrocis medinalis | 背面Back image | 355 | 140 | ||
腹面Abdomen image | 364 | ||||
二化螟 Chilo suppressalis | 背面Back image | 355 | 140 | ||
腹面Abdomen image | 364 | ||||
大型非目标昆虫Big non-target insects | 5800 | 140 | |||
小型昆虫 Small insects | 白背飞虱Sogatella furcifera | 侧面Lateral image | 3200 | 215 | |
褐飞虱Nilaparvata lugens | 侧面Lateral image | 800 | 215 | ||
小型非目标昆虫Small non-target insects | 6000 | 215 |
Table 1 Sample sizes of training and testing insect images.
样本分类 Material category | 昆虫种类 Insect species | 昆虫姿态 Insect posture | 用于训练的样本最大数 Max sample size of training images | 测试样本数 Sample size of testing images | |
---|---|---|---|---|---|
大型昆虫 Big insects | 大螟 Sesamia inferens | 背面Back image | 330 | 140 | |
腹面Abdomen image | 428 | ||||
稻纵卷叶螟 Cnaphalocrocis medinalis | 背面Back image | 355 | 140 | ||
腹面Abdomen image | 364 | ||||
二化螟 Chilo suppressalis | 背面Back image | 355 | 140 | ||
腹面Abdomen image | 364 | ||||
大型非目标昆虫Big non-target insects | 5800 | 140 | |||
小型昆虫 Small insects | 白背飞虱Sogatella furcifera | 侧面Lateral image | 3200 | 215 | |
褐飞虱Nilaparvata lugens | 侧面Lateral image | 800 | 215 | ||
小型非目标昆虫Small non-target insects | 6000 | 215 |
特征参数 Feature | 大型目标害虫 Big pests | 小型目标害虫 Small pests | |||
---|---|---|---|---|---|
识别率 Identification rate | 误检率 False detection rate | 识别率 Identification rate | 误检率 False detection rate | ||
颜色 Color | 52.9 | 18.4 | 87.7 | 14.9 | |
形态 Shape | 75.9 | 15.6 | 84.2 | 19.7 | |
纹理 Texture | 45.7 | 28.6 | 72.3 | 17.9 | |
颜色+形态 Color+Shape | 88.6 | 11.0 | 93.1 | 6.9 | |
颜色+纹理 Color+Texture | 73.8 | 13.2 | 91.6 | 7.3 | |
形态+纹理 Shape+Texture | 83.6 | 12.1 | 90.2 | 6.5 | |
颜色+形态+纹理 Color+Shape+Texture | 90.5 | 8.4 | 94.9 | 4.9 |
Table 2 Identification results of target pests using support vector machine classifiers based on different global features. %
特征参数 Feature | 大型目标害虫 Big pests | 小型目标害虫 Small pests | |||
---|---|---|---|---|---|
识别率 Identification rate | 误检率 False detection rate | 识别率 Identification rate | 误检率 False detection rate | ||
颜色 Color | 52.9 | 18.4 | 87.7 | 14.9 | |
形态 Shape | 75.9 | 15.6 | 84.2 | 19.7 | |
纹理 Texture | 45.7 | 28.6 | 72.3 | 17.9 | |
颜色+形态 Color+Shape | 88.6 | 11.0 | 93.1 | 6.9 | |
颜色+纹理 Color+Texture | 73.8 | 13.2 | 91.6 | 7.3 | |
形态+纹理 Shape+Texture | 83.6 | 12.1 | 90.2 | 6.5 | |
颜色+形态+纹理 Color+Shape+Texture | 90.5 | 8.4 | 94.9 | 4.9 |
特征参数 Feature | 大型目标害虫 Big pests | 小型目标害虫 Small pests | |||
---|---|---|---|---|---|
识别率 Identification rate | 误检率 False detection rate | 识别率 Identification rate | 误检率 False detection rate | ||
HOG (Histograms of oriented gradients) | 87.6 | 5.4 | 87.9 | 8.3 | |
LBP (Local binary pattern) | 23.1 | 9.7 | 63.3 | 17.3 | |
Gabor | 72.9 | 6.9 | 86.4 | 8.9 | |
颜色+纹理+形态+HOG Color+Shape+Texture+HOG | 91.4 | 8.6 | 94.2 | 5.4 |
Table 3 Identification results of target pests using support vector machine classifiers based on different local features. %
特征参数 Feature | 大型目标害虫 Big pests | 小型目标害虫 Small pests | |||
---|---|---|---|---|---|
识别率 Identification rate | 误检率 False detection rate | 识别率 Identification rate | 误检率 False detection rate | ||
HOG (Histograms of oriented gradients) | 87.6 | 5.4 | 87.9 | 8.3 | |
LBP (Local binary pattern) | 23.1 | 9.7 | 63.3 | 17.3 | |
Gabor | 72.9 | 6.9 | 86.4 | 8.9 | |
颜色+纹理+形态+HOG Color+Shape+Texture+HOG | 91.4 | 8.6 | 94.2 | 5.4 |
大型非目标昆虫样本量 Sample size of big non-target insects | 平均识别率 Average identification rate | 平均误检率 Average false detection rate |
---|---|---|
362 | 98.8 | 22.4 |
725 | 97.6 | 23.2 |
1086 | 98.4 | 21.1 |
1450 | 91.4 | 8.6 |
2200 | 89.8 | 12.3 |
2800 | 84.3 | 8.3 |
4350 | 81.2 | 6.8 |
5800 | 80.5 | 5.3 |
Table 4 Identification results of big target pests in different training sample proportions. %
大型非目标昆虫样本量 Sample size of big non-target insects | 平均识别率 Average identification rate | 平均误检率 Average false detection rate |
---|---|---|
362 | 98.8 | 22.4 |
725 | 97.6 | 23.2 |
1086 | 98.4 | 21.1 |
1450 | 91.4 | 8.6 |
2200 | 89.8 | 12.3 |
2800 | 84.3 | 8.3 |
4350 | 81.2 | 6.8 |
5800 | 80.5 | 5.3 |
样本量 Sample size | 平均识别率 Average identification rate/% | 平均误检率 Average false detection rate/% | ||
---|---|---|---|---|
褐飞虱 Nilaparvata lugens | 白背飞虱 Sogatella furcifera | 小型非目标 Small non-target insects | ||
800 | 800 | 800 | 95.6 | 8.5 |
800 | 800 | 1600 | 94.9 | 4.9 |
800 | 800 | 2000 | 85.4 | 2.7 |
800 | 800 | 2400 | 80.7 | 2.8 |
800 | 1600 | 1600 | 92.6 | 7.1 |
800 | 1600 | 3200 | 83.9 | 5.2 |
800 | 3200 | 6000 | 75.1 | 6.9 |
Table 5 Identification results of small target pests in different training sample proportions.
样本量 Sample size | 平均识别率 Average identification rate/% | 平均误检率 Average false detection rate/% | ||
---|---|---|---|---|
褐飞虱 Nilaparvata lugens | 白背飞虱 Sogatella furcifera | 小型非目标 Small non-target insects | ||
800 | 800 | 800 | 95.6 | 8.5 |
800 | 800 | 1600 | 94.9 | 4.9 |
800 | 800 | 2000 | 85.4 | 2.7 |
800 | 800 | 2400 | 80.7 | 2.8 |
800 | 1600 | 1600 | 92.6 | 7.1 |
800 | 1600 | 3200 | 83.9 | 5.2 |
800 | 3200 | 6000 | 75.1 | 6.9 |
昆虫种类 Insect species | 分到各种昆虫中的样本数 Number of samples divided into different insects | 识别率 Identification rate/% | 误检率 False detection rate/% | |||
---|---|---|---|---|---|---|
大螟 S. inferens | 稻纵卷叶螟 C. medinalis | 二化螟 C. suppressalis | 大型非目标昆虫 Big non-target insects | |||
大螟S. inferens | 128 | 0 | 3 | 9 | 91.4 | 7.9 |
稻纵卷叶螟C. medinalis | 0 | 131 | 1 | 8 | 93.6 | 11.5 |
二化螟C. suppressalis | 5 | 0 | 125 | 10 | 89.3 | 6.0 |
非目标大型昆虫Big non-target | 6 | 17 | 4 | 113 | 80.7 | 19.3 |
平均值 Average value | 91.4 | 8.6 |
Table 6 Identification results of big rice pests with optimal image features and training sample proportion.
昆虫种类 Insect species | 分到各种昆虫中的样本数 Number of samples divided into different insects | 识别率 Identification rate/% | 误检率 False detection rate/% | |||
---|---|---|---|---|---|---|
大螟 S. inferens | 稻纵卷叶螟 C. medinalis | 二化螟 C. suppressalis | 大型非目标昆虫 Big non-target insects | |||
大螟S. inferens | 128 | 0 | 3 | 9 | 91.4 | 7.9 |
稻纵卷叶螟C. medinalis | 0 | 131 | 1 | 8 | 93.6 | 11.5 |
二化螟C. suppressalis | 5 | 0 | 125 | 10 | 89.3 | 6.0 |
非目标大型昆虫Big non-target | 6 | 17 | 4 | 113 | 80.7 | 19.3 |
平均值 Average value | 91.4 | 8.6 |
昆虫种类 Insect species | 分到各种昆虫中的样本数 Number of samples divided into different insects | 识别率 Identification rate /% | 误检率 False detection rate /% | |||
---|---|---|---|---|---|---|
白背飞虱 Sogatella furcifera | 褐飞虱 Nilaparvata lugens | 小型非目标昆虫 Small non-target insects | ||||
白背飞虱Sogatella furcifera | 207 | 5 | 3 | 96.3 | 5.1 | |
褐飞虱Nilaparvata lugens | 5 | 201 | 9 | 93.5 | 4.7 | |
小型非目标昆虫Small non-target | 6 | 5 | 204 | 94.9 | 5.6 | |
平均值Average value | 94.9 | 4.9 |
Table 7 Identification results of small rice pests with optimal image features and training sample proportion.
昆虫种类 Insect species | 分到各种昆虫中的样本数 Number of samples divided into different insects | 识别率 Identification rate /% | 误检率 False detection rate /% | |||
---|---|---|---|---|---|---|
白背飞虱 Sogatella furcifera | 褐飞虱 Nilaparvata lugens | 小型非目标昆虫 Small non-target insects | ||||
白背飞虱Sogatella furcifera | 207 | 5 | 3 | 96.3 | 5.1 | |
褐飞虱Nilaparvata lugens | 5 | 201 | 9 | 93.5 | 4.7 | |
小型非目标昆虫Small non-target | 6 | 5 | 204 | 94.9 | 5.6 | |
平均值Average value | 94.9 | 4.9 |
Fig. 2. Receiver operating characteristic curve of support vector machine classifiers. A, Big pests; B, Small pests. PSB, S. inferens; RLF, C. medinalis; SSB, C. suppressalis. WBPH, S. furcifera; BPH, N. lugens. NT1, Big non-target pest; NT2, Small non-target pest.
[1] | 刘芳, 沈佐锐, 张建伟, 杨红珍. 基于颜色特征的昆虫自动鉴定方法. 应用昆虫学报, 2008, 45(1): 150-153. |
Liu F, Shen Z R, Zhang J W, Yang H Z.Automatic insect identification based on color characters.Chin Bull Entomol, 2008, 45(1): 150-153. (in Chinese with English abstract) | |
[2] | 于新文, 沈佐锐, 高灵旺, 李志红. 昆虫图像几何形状特征的提取技术研究. 中国农业大学学报, 2003, 8(3): 47-50. |
Yu X W, Shen Z R, Gao L W, Li Z H.Feature measuring and extraction for digital image of insects.J China Agric Univ, 2003, 8(3): 47-50. (in Chinese with English abstract) | |
[3] | 张红涛, 胡玉霞, 赵明茜, 邱道尹, 张孝远, 张恒源. 田间害虫图像识别中的特征提取与分类器设计研究. 河南农业科学, 2008, 37(9): 73-75. |
Zhang H T, Hu Y X, Zhao M Q, Qiu D Y, Zhang X Y, Zhang H Y.Feature Extraction and classification in the image recognition for agricultural pests.J Henan Agric Sci, 2008, 37(9): 73-75. (in Chinese) | |
[4] | 赵三琴, 丁为民, 刘德营. 基于傅里叶描述子的稻飞虱形状识别. 农业机械学报, 2009, 40(8): 181-184. |
Zhao S Q, Ding W M, Liu D Y.Rice hopper shape recognition based on Furier descriptors.Trans Chin Soc Agric Mach, 2009, 40(8): 181-184. (in Chinese with English abstract) | |
[5] | Zhao J, Cheng X P.Field pest identification by an improved Gabor texture segmentation scheme.New Zeal J Agric Res, 2007, 50(5): 719-723. |
[6] | Larios N, Deng H, Zhang W, Sarpola M, Yuen J, Paasch R, Moldenke A, Lytle D.A, Correa S.R, Mortensen E, Shapiro L G, Dietterich T G. Automated insect identification through concatenated histograms of local appearance features: Feature vector generation and region detection for deformable objects.Mach Vision & Appl, 2008, 19(2): 105-123. |
[7] | Wen C, Guyer D E, Li W.Automated insect classification with combined Global and local features for orchard management//An ASABE Meeting Presentation, June 21-24, 2009. Reno, Nevada: 2009. |
[8] | 李凡. 基于数字图像的蝴蝶种类自动识别研究. 北京:北京林业大学, 2015. |
Li F.The Research on Automatic Identification of Butterfly Species Based on the Digital Image. Beijing: Beijing Forestry University, 2015. (in Chinese with English abstract) | |
[9] | 胡永强, 宋良图, 张洁, 谢成军, 李瑞. 基于稀疏表示的多特征融合害虫图像识别. 模式识别与人工智能, 2014, 27(11): 985-992. |
Hu Y Q, Song L T, Zhang J, Xie C J, Li R.Pest Image recognition of multi-feature fusion based on sparse representation. Pat Rec & Art Int, 2014, 27(11): 985-992. (in Chinese with English abstract) | |
[10] | Liu Z, Gao J, Yang G, Zhang H, He Y.Localization and classification of paddy field pests using a saliency map and deep convolutional neural network.Sci Rep, 2016, 6: 20410. |
[11] | 杨国国, 鲍一丹, 刘子毅. 基于图像显著性分析与卷积神经网络的茶园害虫定位与识别. 农业工程学报, 2017, 33(6): 156-162. |
Yang G G, Bao Y D, Liu Z Y.Location and recognition of pests in tea plantation based on image saliency analysis and convolutional neural network.Trans Chin Soc Agric Eng, 2017, 33(6): 156-162. (in Chinese with English abstract) | |
[12] | Wen C, Wu D, Hu H, Pan W.Pose estimation-dependent identification method for field moth images using deep learning architecture.Bios Eng, 2015, 136: 117-128. |
[13] | Lytle D A, Martínezmuñoz G, Zhang W, Lorios N, Shaprio L.Automated processing and identification of benthic invertebrate samples. J North Am Benthol Soc, 2010, 29(3): 867-874. |
[14] | 冼鼎翔, 姚青, 杨保军, 罗举, 谭畅, 张超, 徐一成. 基于图像的水稻灯诱害虫自动识别技术的研究. 中国水稻科学, 2015, 29(3): 299-304. |
Xian D X, Yao Q, Yang B J, Luo J, Tan C, Zhang C, Xu Y C.Automatic identification of rice light-trapped pest based on image.Chin J Rice Sci, 2015, 29(3): 299-304. (in Chinese with English abstract) | |
[15] | 刘鹏宇. 基于内容的图像特征提取算法的研究. 长春: 吉林大学, 2004. |
Liu P Y.Study on the algorithms for content-based image feature extraction. Changchun: Jilin University, 2004. (in Chinese with English abstract) | |
[16] | 梁勇. 智能虫情测报灯在水稻害虫测报上的应用效果. 广西植保, 2009, 22(1): 21-23. |
Liang Y.Application effect of intelligent insect report lamp on rice pest monitoring.Guangxi Plant Protect, 2009, 22(1): 21-23. (in Chinese) | |
[17] | 张新明, 张爱丽, 郑延斌, 孙印杰, 李双. 改进的最大熵阈值分割及其快速实现. 计算机科学, 2011, 38(8): 278-283. |
Zhang X M, Zhang A L, Zheng Y B, Sun Y J, Li S.Improved two-dimensional maximum entropy image thresholding and its fast recursive realization.Comput Sci, 2011, 38(8): 278-283. (in Chinese with English abstract) | |
[18] | 苏煜, 山世光, 陈熙霖, 高文. 基于全局和局部特征集成的人脸识别. 软件学报, 2010, 21(8): 1849-1862. |
Su Y, Shan S G, Chen X L, Gao W.Integration of global and local feature for face recognition. J Softw, 2010, 21(8): 1849-1862. (in Chinese with English abstract) | |
[19] | 彭晶. 基于全局特征点提取的指纹识别方法研究. 长春: 吉林大学, 2005. |
Peng J.The study of fingerprint identification based on the deltas and cores. Changchun: Jilin University, 2005. (in Chinese with English abstract) | |
[20] | Liu B, Wu H, Su W, Sun J.Sector-ring HOG for rotation-invariant human detection.Signal Proc Image Comm, 2017, 54(C): 1-10. |
[21] | Zhu J X, Su G D, Li Y C.Facial expression recognition based on gabor feature and adaboost.Mod Sci Instrum, 2011, 17(8): 993-998. |
[22] | Lei Y M, Zhao X M, Guo W D.Cirrhosis recognition of liver ultrasound images based on SVM and uniform LBP feature//2015 IEEE Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), 19-20 December, 2015. Chongqing, China: IEEE, 2015: 382-387. |
[23] | Olgun M, Onarcan A O, Sezer O, Koyuncu O.Wheat grain classification by using dense SIFT features with SVM classifier.Comput & Elec Agric, 2016, 122(C): 185-190. |
[24] | Dlin S, Jiang Y T, Lin J J.Object Tracking Using a Particle Filter with SURF Feature.J Elec Sci & Technol, 2014, 8815(3): 339-344. |
[25] | 王娟, 孔兵, 贾巧丽. 基于颜色特征的图像检索技术. 计算机系统应用, 2011, 20(7): 160-164. |
Wang J, Kong B, Jia Q L.Color-Based Image Retrieval.Comut Sys Appl, 2011, 20(7): 160-164. (in Chinese with English abstract) | |
[26] | 任国贞, 江涛. 基于灰度共生矩阵的纹理提取方法研究. 计算机应用与软件, 2014(11): 190-192. |
Ren G Z, Jiang T.Study on glcm-based texture extraction methods.Comput Appl Softw, 2014(11): 190-192. (in Chinese with English abstract) | |
[27] | 郑淑丹, 郑江华, 石明辉, 郭宝林, 森巴提, 孙志群, 贾晓光, 李晓瑾. 基于分形和灰度共生矩阵纹理特征的种植型药用植物遥感分类. 遥感学报, 2014, 18(4): 868-886. |
Zheng S D, Zheng J H, Shi M H, Guo B L, Sen B T, Sun Z Q, Jia X G, Li X J.Classification of cultivated Chinese medicinal plants based on fractal theory and gray level co-occurrence matrix textures.J Remot Sens, 2014, 18(4): 868-886. (in Chinese with English abstract) | |
[28] | 杨舒, 王玉德. 基于Contourlet变换和Hu不变矩的图像检索算法. 红外与激光工程, 2014, 43(1): 306-310. |
Yang S, Wang Y D.Image retrieval algorithm based on contourlet transform and Hu invariant moment.Infrar Laser Eng, 2014, 43(1): 306-310. (in Chinese with English abstract) | |
[29] | 张华. 基于形态特征提取的图像匹配搜索技术研究. 物联网技术, 2013(11): 16-18. |
Zhang H.Research on image matching search technology based on morphology characterization extraction.Internet Things Technol, 2013(11): 16-18. (in Chinese) | |
[30] | Arivazhagan S, Ganesan L, Priyal S P.Texture classification using Gabor wavelets based rotation invariant features.Patt Recog Lett, 2006, 27(16): 1976-1982. |
[31] | 王昊京, 王建立, 王鸣浩, 阴玉梅. 采用双线性插值收缩的图像修复方法. 光学精密工程, 2010, 18(5): 1234-1241. |
Wang H J, Wang J L, Wang M H, Yin Y M.Efficient image inpainting based on bilinear interpolation downscaling.Optics Prec Eng, 2010, 18(5): 1234-1241. (in Chinese with English abstract) | |
[32] | Ojala T, Pietikainen M, Maenpaa T.Multiresolution gray-scale and rotation invariant texture classification with local binary patterns// IEEE Transactions on Pattern Analysis and Machine Intelligence.Springer Berlin Heidelberg, 2000: 404-420. |
[33] | 曾凡涛. 基于改进LBP特征的图像理解. 长春: 吉林大学, 2014. |
Zeng F T.Image Understanding Based on Improved LBP Methodology. Changchun: Jilin University, 2014. (in Chinese with English abstract) | |
[34] | 陈振华, 余永权, 张瑞. 模糊模式识别的几种基本模型研究. 计算机技术与发展, 2010, 20(9): 32-35. |
Chen Z H, Yu Y Q, Zhang R.Research on several models of fuzzy pattern recognition problems.Comput Technol Dev, 2010, 20(9): 32-35. (in Chinese with English abstract) | |
[35] | 王双成, 杜瑞杰, 刘颖. 连续属性完全贝叶斯分类器的学习与优化. 计算机学报, 2012, 35(10): 2129-2138. |
Wang S C, Du R J, Liu Y.The learning and optimization of full bayes classifiers with continuous attributes. Chin J Comput, 2012, 35(10): 2129-2138. (in Chinese with English abstract) | |
[36] | 吴晓军, 邹广华. 基于边缘几何特征的高性能模板匹配算法. 仪器仪表学报, 2013, 34(7): 23-30. |
Wu X J, Zou G H.High performance template matching algorithm based on edge geometry features.Chin J Sci Instrum, 2013, 34(7): 23-30. (in Chinese with English abstract) | |
[37] | 罗昕. 基于Fisher鉴别分析对支持向量机算法进行优化的研究. 昆明: 云南大学, 2016. |
Luo X.Research on the optimization of support vector machine algorithm based on Fisher discriminant analysis. Kunming: Yunnan University, 2016. (in Chinese with English abstract) | |
[38] | 任俊, 李志能. 支持向量机在字符分类识别中的应用. 浙江大学学报: 工学版, 2005, 39(8):1136-1141. |
Ren J, Li Z N.Application of support vector machines in classification and recognition of characters.J Zhejiang Univ: Eng Sci, 2005, 39(8): 1136-1141. (in Chinese with English abstract) | |
[39] | 崔萌, 张春雷,. LIBSVM, LIBLINEAR, SVMmuticlass比较研究. 电子技术, 2015(6): 1-5. |
Cui M, Zhang C L.The comparison study of LIBSVM, LIBLINEAR and SVMmulticlass.Elec Technol, 2015 (6):1-5. (in Chinese) | |
[40] | 邓江洪, 赵领. 多特征筛选与支持向量机相融合的图像分类模型. 吉林大学学报:理学版, 2016, 54(4): 862-866. |
Deng J H, Zhao L.Image Classification model with multiple feature selection and support vector machine.J Jilin Univ: Sci Ed, 2016, 54(4): 862-866. (in Chinese with English abstract) | |
[41] | 沙睿. 基于多特征融合的图像相似性研究. 南京: 南京大学, 2011. |
Sha R.A Study of image Similarity based on multi-features. Nanjing: Nanjing University, 2011. (in Chinese with English abstract) |
[1] | Ding-xiang XIAN, Qing YAO, Bao-jun YANG, Ju LUO, Chang TAN, Chao ZHANG, Yi-cheng XU. Automatic Identification of Rice Light-trapped Pests Based on Images [J]. Chinese Journal OF Rice Science, 2015, 29(3): 299-304. |
[2] | HUANG Shiwen1,2, LIU Lianmeng1, WANG Ling1, LIU Enyong1,2 , FAN Zenglan1,2, XIAO Danfeng1 , HOU Enqing1,2. Effects of Application Volume and Approaches of Pesticide on Controlling Major Pests and Diseases on Different Plant Type Rice at Late Growth Stage [J]. Chinese Journal of Rice Science, 2012, 26(2): 211-217. |
[3] | SHI Jingjing,LIU Zhanyu,ZHANG Lili,ZHOU Wan,HUANG Jingfeng. Hyperspectral Recognition of Rice Damaged by Rice Leaf Roller Based on Support Vector Machine [J]. Chinese Journal of Rice Science, 2009, 23(3): 331-334 . |
[4] | Hu Quansheng,Zhang Xiaoxi. ESRICE: An Expert System for Management of Rice Pest Insects Design and Implementation (in English) [J]. Chinese Journal of Rice Science, 1993, 7(3): 159-166 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||